首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   11篇
  2023年   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1978年   1篇
  1974年   2篇
  1971年   1篇
  1968年   1篇
  1960年   1篇
  1959年   1篇
  1942年   1篇
  1939年   1篇
排序方式: 共有96条查询结果,搜索用时 31 毫秒
51.
Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide‐dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid‐infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine‐scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175–504 Mg/ha) than those in nonriverine settings (44–271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000–5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across intertidal wetland systems.  相似文献   
52.
Mangrove forests cover large areas of tropical and subtropical coastlines. They provide a wide range of ecosystem services that includes carbon storage in above- and below ground biomass and in soils. Carbon dioxide (CO2) emissions from soil, or soil respiration is important in the global carbon budget and is sensitive to increasing global temperature. To understand the magnitude of mangrove soil respiration and the influence of forest structure and temperature on the variation in mangrove soil respiration I assessed soil respiration at eleven mangrove sites, ranging from latitude 27°N to 37°S. Mangrove soil respiration was similar to those observed for terrestrial forest soils. Soil respiration was correlated with leaf area index (LAI) and aboveground net primary production (litterfall), which should aid scaling up to regional and global estimates of soil respiration. Using a carbon balance model, total belowground carbon allocation (TBCA) per unit litterfall was similar in tall mangrove forests as observed in terrestrial forests, but in scrub mangrove forests TBCA per unit litter fall was greater than in terrestrial forests, suggesting mangroves allocate a large proportion of their fixed carbon below ground under unfavorable environmental conditions. The response of soil respiration to soil temperature was not a linear function of temperature. At temperatures below 26°C Q10 of mangrove soil respiration was 2.6, similar to that reported for terrestrial forest soils. However in scrub forests soil respiration declined with increasing soil temperature, largely because of reduced canopy cover and enhanced activity of photosynthetic benthic microbial communities.  相似文献   
53.
Mangrove forest coverage is increasing in the estuaries of the North Island of New Zealand, causing changes in estuarine ecosystem structure and function. Sedimentation and associated nutrient enrichment have been proposed to be factors leading to increases in mangrove cover, but the relative importance of each of these factors is unknown. We conducted a fertilization study in estuaries with different sedimentation histories in order to determine the role of nutrient enrichment in stimulating mangrove growth and forest development. We expected that if mangroves were nutrient-limited, nutrient enrichment would lead to increases in mangrove growth and forest structure and that nutrient enrichment of trees in our site with low sedimentation would give rise to trees and sediments that converged in terms of functional characteristics on control sites in our high sedimentation site. The effects of fertilizing with nitrogen (N) varied among sites and across the intertidal zone, with enhancements in growth, photosynthetic carbon gain, N resorption prior to leaf senescence and the leaf area index of canopies being significantly greater at the high sedimentation sites than at the low sedimentation sites, and in landward dwarf trees compared to seaward fringing trees. Sediment respiration (CO2 efflux) was higher at the high sedimentation site than at the low one sedimentation site, but it was not significantly affected by fertilization, suggesting that the high sedimentation site supported greater bacterial mineralization of sediment carbon. Nutrient enrichment of the coastal zone has a role in facilitating the expansion of mangroves in estuaries of the North Island of New Zealand, but this effect is secondary to that of sedimentation, which increases habitat area and stimulates growth. In estuaries with high sediment loads, enrichment with N will cause greater mangrove growth and further changes in ecosystem function.  相似文献   
54.
Opportunities for improving phosphorus-use efficiency in crop plants   总被引:5,自引:0,他引:5  
Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P-acquisition efficiency) and by improved productivity per unit P taken up (P-use efficiency). This review focuses on improved P-use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P-use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait.  相似文献   
55.
? To clarify the role of branch photosynthesis in tree functioning, the presence and function of chloroplasts in branch xylem tissue were studied in a diverse range of mangrove species growing in Australia. ? The presence of xylary chloroplasts was observed via chlorophyll fluorescence of transverse sections. Paired, attached branches were selected to study the effects of covering branches with aluminium foil on the gas exchange characteristics of leaves and the hydraulic conductivity of branches. ? Xylary chloroplasts occurred in all species, but were differently distributed among living cell types in the xylem. Covering stems altered the gas exchange characteristics of leaves, such that water-use efficiency was greater in exposed leaves of covered than of uncovered branches. ? Leaf-specific hydraulic conductivity of stems was lower in covered than in uncovered branches, implicating stem photosynthesis in the maintenance of hydraulic function. Given their proximity to xylem vessels, we suggest that xylary chloroplasts may play a role in light-dependent repair of embolized xylem vessels.  相似文献   
56.
Ecosystems in the tropics are predicted to have stronger responses to nutrient enrichment, greater diversity, and more intense biotic interactions than in temperate areas. Mangrove forests, which occur across a broad biogeographic range from warm temperate to tropical, provide a unique opportunity to test these hypotheses by investigating the responses of herbivores to nutrient enrichment in temperate versus tropical latitudes. Mangroves are complex intertidal ecosystems with spatial differences in structure and diversity along tidal gradients and are threatened globally by human activities including nutrient over-enrichment. In this study, we used long-term fertilization experiments at the Indian River Lagoon, FL; Twin Cays, Belize; and Bocas del Toro, Panamá to determine how increased nutrients impact herbivore abundance and herbivory of Rhizophora mangle at the tree, forest, and regional scales. At these locations, which span approximately 2185 km and 18.4º of latitude, we fertilized individual trees with one of three treatments (Control, +N, +P) in two zones (fringe, scrub) along transects perpendicular to the shoreline and measured their responses for 4 years. Herbivory was measured as folivory, loss of yield, and tissue mining. Although nutrient enrichment altered plant growth, leaf traits, and nutrient dynamics, these variables had little effect on folivory at any location. Our results did not support the prediction that herbivory and per capita consumption are greatest at the most tropical location. Instead, folivory was highest at the most temperate location and lowest at the intermediate location. Folivory was generally higher in the fringe than in the scrub zone, but the pattern varied by location, herbivore, and nutrient treatment. Folivory by a dominant herbivore, Aratus pisonii, decreased from the highest to the lowest latitude. Our data suggest that factors controlling population dynamics of A. pisonii cascade to the mangrove canopy, linking herbivory to crab densities.  相似文献   
57.
Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA). We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (∼10 cm diameter) were 48±1 to 89±23 years old (mean ± 1σ) and that their growth rates ranged from 4.08±2.36 to 5.30±3.33 mm/yr (mean ±1σ). The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region.  相似文献   
58.
1. Shade-tolerant species that inhabit the understorey have a range of leaf lifetimes (from 1 to 8 years), which may indicate a variety of strategies for dealing with increases in light associated with tree-fall gaps. We hypothesized that species with long-lived leaves should be more tolerant of an increase in light levels than species with short-lived leaves.
2. In understorey plants of 12 shade-tolerant rain-forest species, photoinhibition, measured as a reduction in the chlorophyll fluorescence parameter F v/ F m when leaf discs were exposed to 1h at 1000μmol m–2s–1, was greater in species with short-lived leaves than species with long-lived leaves.
3. Less photoinhibition in species with long-lived leaves was not associated with higher levels of non-photochemical dissipation (NPQ) of absorbed light, but may be the result of a higher yield of photosystem II compared with short-lived leaves.
4. Thus, species with long-lived leaves are more tolerant of abrupt increases in light that occur when tree-fall gaps are formed than species with short-lived leaves.
5. Discs from leaves of all species growing in tree-fall gaps had higher levels of NPQ, yield of photosystem II and more rapid recovery from photoinhibition than leaves developed in the understorey; however, there were no differences among species with short- and long-lived leaves.  相似文献   
59.
Mangrove forests are rapidly expanding their distribution in New Zealand, which is at the southern limit of their range. We investigated how these expanding mangrove forests develop through time. We assessed patterns in forest structure and function at the Firth of Thames, which is a rapidly accreting mangrove site in New Zealand where 1 km of mangrove of Avicennia marina has established seaward since the 1950s. Across the intertidal region, mangrove forest structure was highly variable. We used bomb-pulse radiocarbon dating to age the forest. Two major forest establishment events were identified; one in 1978–1981 and another in 1991–1995. These events coincided with sustained El Niño activity and are likely the result of reduced wind and wave energy at the site during these periods. We used the two forests of different ages to assess whether mangroves in New Zealand mature at similar rates as other mangroves and whether they conform to classic models of succession. The timing of forest maturation is similar in New Zealand as in more tropical locations with trees exhibiting features of mature forests as they age from about 10 to about 30 years. In older forest (~30 years old) trees become larger and stands more homogenous than in the younger forest (~10 years old). Carbon and nutrient concentrations in soils increased and soils become more aerobic in older forest compared to younger forest. Additionally, using fertilization experiments, we established that despite reduced growth rates in older forests, nitrogen remained limiting to growth in both older and young forests. However, in contrast to classic successional models leaf tissue nutrient concentrations and nutrient conservation (nutrient resorption from senescence leaf tissue) were similar in forests of differing ages and did not vary with fertilization. We conclude that mangrove forest expansion in New Zealand is influenced by climatic factors. Mangrove forests mature rapidly, even at the limits of their range and they satisfy many of the successional patterns predicted by Odum (1969) for the early stages of forest succession.  相似文献   
60.
The objectives of this study were to determine effects of nutrient enrichment on plant growth, nutrient dynamics, and photosynthesis in a disturbed mangrove forest in an abandoned mosquito impoundment in Florida. Impounding altered the hydrology and soil chemistry of the site. In 1997, we established a factorial experiment along a tree-height gradient with three zones, i.e., fringe, transition, dwarf, and three fertilizer treatment levels, i.e., nitrogen (N), phosphorus (P), control, in Mosquito Impoundment 23 on the eastern side of Indian River. Transects traversed the forest perpendicular to the shoreline, from a Rhizophora mangle-dominated fringe through an Avicennia germinans stand of intermediate height, and into a scrub or dwarf stand of A. germinans in the hinterland. Growth rates increased significantly in response to N fertilization. Our growth data indicated that this site is N-limited along the tree-height gradient. After 2 years of N addition, dwarf trees resembled vigorously growing saplings. Addition of N also affected internal dynamics of N and P and caused increases in rates of photosynthesis. These findings contrast with results for a R. mangle-dominated forest in Belize where the fringe is N-limited, but the dwarf zone is P-limited and the transition zone is co-limited by N and P. This study demonstrated that patterns of nutrient limitation in mangrove ecosystems are complex, that not all processes respond similarly to the same nutrient, and that similar habitats are not limited by the same nutrient when different mangrove forests are compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号