首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   12篇
  165篇
  2023年   5篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   6篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   12篇
  2014年   3篇
  2013年   5篇
  2012年   9篇
  2011年   8篇
  2010年   3篇
  2009年   7篇
  2008年   9篇
  2007年   16篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1921年   1篇
  1920年   1篇
排序方式: 共有165条查询结果,搜索用时 10 毫秒
61.
Leaf optical properties (400–1,100 nm) were compared for four species of rain forest trees with crowns in understory, mid-canopy, and canopy positions to test whether optical properties change with light environment. The species tested represent a spectrum of regeneration patterns ranging from shade tolerant to light demanding. Overall, leaf optical properties of the four species were similar. Differences in absorptance were small, but statistically significant among the species and positions along the canopy gradient. Species absorptance differences corresponded somewhat to shade tolerance; two of the shade species showed higher absorptance in lower light environments, while the sun species showed the reverse pattern. Specific leaf mass (leaf weight per unit area) and chlorophyll content per unit leaf weight also changed along the canopy gradient. Specific leaf mass was positively correlated and chlorophyll per unit leaf weight was negatively correlated with increasing light environment. Consequently, the efficiency of absorption, as represented by the absorptance per unit leaf weight, increased as light level decreased, largely due to changes in specific leaf mass. In contrast, efficiency of absorption per unit leaf chlorophyll was relatively constant with light environment for the two species measured for chlorophyll.  相似文献   
62.
63.
The antimicrobial activity of 35 indigenous South African Helichrysum species was determined against six microorganisms. Seven of the 36 chloroform:methanol (1:1) extracts (leaf and stem extracts for all plants and an additional flower extract for H. rugulosum) exhibited minimum inhibitory concentration (MIC) values lower than 0.1 mg/ml against Bacillus cereus and/or Staphylococcus aureus. The in vitro cytotoxicity [against transformed human kidney epithelial (Graham) cells, MCF-7 breast adenocarcinoma and SF-268 glioblastoma cells] of these extracts was also determined at a concentration of 0.1 mg/ml using the sulforhodamine B (SRB) assay. For seven species less than 25% growth was observed for the Graham and MCF-7 cell lines at the test concentration.  相似文献   
64.
Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.  相似文献   
65.
66.
Loricariidae or suckermouth armored catfishes are one of several aquatic taxa feeding on epilithic and epiphytic algae. Their upper and lower jaws bear exquisitely curved teeth, which usually are asymmetrically bicuspid. The enlarged lower lip carries papillae with keratinous unicellular epidermal brushes or unculi. Teeth, and probably unculi too, assist in scraping food off substrates. Their morphology, growth, and replacement is examined and compared among several loricariid species, using cleared and stained specimens, serial sections, and SEM. Apart from the general tooth form and crown shape, the anterior layer of soft tissue on the lower shaft region, present in several species, appears to be a specialization for enhancing the mobility of individual teeth when scraping on uneven surfaces. During early ontogeny, a transition from simple conical to mature tooth occurs. The first unculi appear together with the first teeth carrying a bicuspid crown, 2 days after the first exogenous feeding, but synchronous with the complete resorption of the yolk sac.  相似文献   
67.
68.
Tree species distribution in lowland tropical forests is strongly associated with rainfall amount and distribution. Not only plant water availability, but also irradiance, soil fertility, and pest pressure covary along rainfall gradients. To assess the role of water availability in shaping species distribution, we carried out a reciprocal transplanting experiment in gaps in a dry and a wet forest site in Ghana, using 2,670 seedlings of 23 tree species belonging to three contrasting rainfall distributions groups (dry species, ubiquitous species, and wet species). We evaluated seasonal patterns in climatic conditions, seedling physiology and performance (survival and growth) over a 2‐year period and related seedling performance to species distribution along Ghana's rainfall gradient. The dry forest site had, compared to the wet forest, higher irradiance, and soil nutrient availability and experienced stronger atmospheric drought (2.0 vs. 0.6 kPa vapor pressure deficit) and reduced soil water potential (?5.0 vs. ?0.6 MPa soil water potential) during the dry season. In both forests, dry species showed significantly higher stomatal conductance and lower leaf water potential, than wet species, and in the dry forest, dry species also realized higher drought survival and growth rate than wet species. Dry species are therefore more drought tolerant, and unlike the wet forest species, they achieve a home advantage. Species drought performance in the dry forest relative to the wet forest significantly predicted species position on the rainfall gradient in Ghana, indicating that the ability to grow and survive better in dry forests and during dry seasons may allow species to occur in low rainfall areas. Drought is therefore an important environmental filter that influences forest composition and dynamics. Currently, many tropical forests experience increase in frequency and intensity of droughts, and our results suggest that this may lead to reduction in tree productivity and shifts in species distribution.  相似文献   
69.
Weather surveillance radars are increasingly used for monitoring the movements and abundances of animals in the airspace. However, analysis of weather radar data remains a specialised task that can be technically challenging. Major hurdles are the difficulty of accessing and visualising radar data on a software platform familiar to ecologists and biologists, processing the low‐level data into products that are biologically meaningful, and summarizing these results in standardized measures. To overcome these hurdles, we developed the open source R package bioRad, which provides a toolbox for accessing, visualizing and analyzing weather radar data for biological studies. It provides functionality to access low‐level radar data, process these data into meaningful biological information on animal speeds and directions at different altitudes in the atmosphere, visualize these biological extractions, and calculate further summary statistics. The package aims to standardize methods for extracting and reporting biological signals from weather radars. Here we describe a roadmap for analyzing weather radar data using bioRad. We also define weather radar equivalents for familiar measures used in the field of migration ecology, such as migration traffic rates, and recommend several good practices for reporting these measures. The bioRad package integrates with low‐level data from both the European radar network (OPERA) and the radar network of the United States (NEXRAD). bioRad aims to make weather radar studies in ecology easier and more reproducible, allowing for better inter‐comparability of studies.  相似文献   
70.
Understanding the genetic basis of local adaptation requires insight in the fitness effects of individual loci under natural field conditions. While rapid progress is made in the search for genes that control differences between plant populations, it is typically unknown whether the genes under study are in fact key targets of habitat-specific natural selection. Using a quantitative trait loci (QTL) approach, we show that a QTL associated with flowering-time variation between two locally adapted wild barley populations is an important determinant of fitness in one, but not in the other population's native habitat. The QTL mapped to the same position as a habitat-specific QTL for field fitness that affected plant reproductive output in only one of the parental habitats, indicating that the genomic region is under differential selection between the native habitats. Consistent with the QTL results, phenotypic selection of flowering time differed between the two environments, whereas other traits (growth rate and seed weight) were under selection but experienced no habitat-specific differential selection. This implies the flowering-time QTL as a driver of adaptive population divergence. Our results from phenotypic selection and QTL analysis are consistent with local adaptation without genetic trade-offs in performance across environments, i.e. without alleles or traits having opposing fitness effects in contrasting environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号