首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2499篇
  免费   190篇
  2689篇
  2023年   8篇
  2022年   29篇
  2021年   47篇
  2020年   31篇
  2019年   58篇
  2018年   60篇
  2017年   55篇
  2016年   90篇
  2015年   120篇
  2014年   119篇
  2013年   175篇
  2012年   176篇
  2011年   176篇
  2010年   125篇
  2009年   116篇
  2008年   124篇
  2007年   117篇
  2006年   93篇
  2005年   114篇
  2004年   88篇
  2003年   84篇
  2002年   93篇
  2001年   59篇
  2000年   58篇
  1999年   54篇
  1998年   34篇
  1997年   31篇
  1996年   20篇
  1995年   17篇
  1994年   20篇
  1993年   12篇
  1992年   34篇
  1991年   25篇
  1990年   15篇
  1989年   20篇
  1988年   26篇
  1987年   21篇
  1986年   15篇
  1985年   18篇
  1984年   12篇
  1983年   14篇
  1982年   9篇
  1981年   10篇
  1980年   7篇
  1979年   10篇
  1973年   5篇
  1972年   6篇
  1970年   4篇
  1967年   5篇
  1966年   4篇
排序方式: 共有2689条查询结果,搜索用时 21 毫秒
31.
Amaranthus leucocarpus lectin is a homodimeric glycoprotein of 35 kDa per sub-unit, which interacts specifically with N-acetyl-galactosamine. In this work, we compared different glycoproteins that contain Galbeta1-3 GalNAcalpha1-3 Ser/Thr or GalNAcalpha1-3 Ser/Thr in their structure as ligands to purify the A. leucocarpus lectin. From the glycoproteins tested, fetuin was the most potent inhibitor of the hemagglutinating activity and the better ligand for lectin purification; however, the use of desialylated stroma from erythrocytes represented the cheapest method to purify this lectin. O-linked glycans released from the glycoproteins used as affinity matrix and those from different erythrocytes were less inhibitory than parental glycoproteins. The NH2-terminal of the lectin is blocked; moreover, this is the only example of a lectin isolated from this genus to be a glycoprotein. Analysis of the glycoprotein sequences with inhibitory activity for the lectin, showed a different pattern in the O-glycosylation, which confirms that A. leucocarpus lectin recognizes conformation and, probably, distances among O-linked glycans moieties.  相似文献   
32.
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.  相似文献   
33.
Leupeptin and similar peptide argininal (arginine aldehyde) transition-state analog protease inhibitors exist in three covalent forms in aqueous solution, the leupeptin hydrate (IH), a cyclic carbinolamine form (IC) generated by the addition of the guanidino epsilon N to the aldehydic carbon, and the free aldehyde form (IA). 1H NMR in D2O show their equilibrium concentrations to be 42, 56, and 2% for IH, IC (R and S enantiomers), and IA. The rates of conversion of (formula; see text) were determined by 1H NMR in D2O by trapping IA with semicarbazide. Application of a deuterium isotope effect of 2.8 led to rate constants in H2O for kC of 0.092 min-1 and kD of 0.73 min-1. The equilibrium concentration of IA and rates for kC and kD are then used to explain the lag phase in the inhibition of cathepsin B and papain by leupeptin. Two circumstances are observed. (i) At micromolar concentrations of leupeptin and papain the binding of leupeptin is biphasic with rate constants identical to kD and kC. (ii) At more dilute nanomolar concentrations of total leupeptin and proteases, the observed lag phase for approach to steady-state inhibition (with rate constant k') is now explained by the low values of the koff rate constants (0.072 min-1 for cathepsin B and 0.024 min-1 for papain) together with the extremely low concentrations of the active inhibitor form IA, with k' = kon[IA] + koff. While kon[IA] is slow, the second-order rate constant kon is found to be quite fast, 1.2 x 10(7) M-1 s-1 for cathepsin B and 1.8 x 10(7) M-1 s-1 for papain. Thus, the binding of leupeptin to cathepsin B and papain may show a lag phase, but this is not due to slow binding.  相似文献   
34.
Invasive diseases present an increasing problem worldwide; however, genomic techniques are now available to investigate the timing and geographical origin of such introductions. We employed genomic techniques to demonstrate that the bacterial pathogen causing Pierce's disease of grapevine (PD) is not native to the US as previously assumed, but descended from a single genotype introduced from Central America. PD has posed a serious threat to the US wine industry ever since its first outbreak in Anaheim, California in the 1880s and continues to inhibit grape cultivation in a large area of the country. It is caused by infection of xylem vessels by the bacterium Xylella fastidiosa subsp. fastidiosa, a genetically distinct subspecies at least 15,000 years old. We present five independent kinds of evidence that strongly support our invasion hypothesis: 1) a genome-wide lack of genetic variability in X. fastidiosa subsp. fastidiosa found in the US, consistent with a recent common ancestor; 2) evidence for historical allopatry of the North American subspecies X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa; 3) evidence that X. fastidiosa subsp. fastidiosa evolved in a more tropical climate than X. fastidiosa subsp. multiplex; 4) much greater genetic variability in the proposed source population in Central America, variation within which the US genotypes are phylogenetically nested; and 5) the circumstantial evidence of importation of known hosts (coffee plants) from Central America directly into southern California just prior to the first known outbreak of the disease. The lack of genetic variation in X. fastidiosa subsp. fastidiosa in the US suggests that preventing additional introductions is important since new genetic variation may undermine PD control measures, or may lead to infection of other crop plants through the creation of novel genotypes via inter-subspecific recombination. In general, geographically mixing of previously isolated subspecies should be avoided.  相似文献   
35.
Protein quality was assayed by simultaneous measurement of lysine (Lys), carboxymethyllysine (CML) and lysinoalanine (LAL). GC-FID analysis of N-tert-butyl dimethylsilyl (tBDMSi) derivatives of these amino acids was undertaken. tBDMSi derivates were separated on a CP-SIL 5CB commercially fused silica capillary column (25 m x 0.25 mm i.d., 0.25 microm film thickness) employing a thermal gradient programmed from 200 to 300 degrees C. The identity of tBDMSi derivatives of Lys, CML and LAL was established by GC-MS while FID detection was employed for quantification. Analytical parameters such as linearity (lysine 350-4200 microM, LAL 3-81 microM, CML 16-172 microM), precision (1-13% variation coefficients), accuracy (85-108% average recovery) and limits of detection (lysine 0.4 mg/100 g protein, LAL 5.0 mg/100 g protein, CML 3.4 mg/100 g protein) and quantification (lysine 1.4 mg/100g protein, LAL 15.2 mg/100 g protein, CML 11.2 mg/100 g protein) were determined for validation of the analytical approach. Model systems and real foods have been studied. Kinetic of CML formation from different food proteins (BSA, soy protein, casein and gluten) was performed employing model systems. Carboxymethylation rate depended on the source of protein. Maillard reaction progressed to advanced stages damaging the protein quality of stored infant foods, soy drinks, boiled eggs and dry powdered crepes. CML values ranged from 62 to 440 mg/100 g protein were measured. LAL was also formed during boiling eggs (21-68 mg/100g protein) indicating additional damage by crosslinking reaction. In agreement, lysine content was affected by both food processing and storage.  相似文献   
36.
37.

Background  

In the present study we have analyzed the mechanisms of calcium entry and mobilization in platelets obtained from rats chronically treated with the nitric oxide synthesis inhibitor, N-nitro L-arginine methyl ester [L-NAME, 40 mg/kg/day, 5 days). The platelets were obtained the day of the experiment, washed and loaded with fura-2. The intracellular calcium levels were determined in suspension of cells by means of fluorescence spectroscopy.  相似文献   
38.
The aim of this study was to evaluate whether L-Arginine (L-Arg) supplementation modifies nitric oxide (NO) system and consequently aquaporin-2 (AQP2) expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS) activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules. Western blot was used to detect the expression of AQP2 and NOS types I and III; real time PCR was used to quantify AQP2 mRNA. The expression of both NOS isoforms, NOS I and NOS III, was decreased in the renal outer medulla of diabetic rats and L-Arg failed to prevent these decreases. However, L-Arg improved NO production, NADPH-diaphorase activity in collecting ducts and other tubular structures, and NOS activity in renal homogenates from diabetic rats. AQP2 protein and mRNA were decreased in the renal outer medulla of diabetic rats and L-Arg administration prevented these decreases. These results suggest that the decreased NOS activity in collecting ducts of the renal outer medulla may cause, at least in part, the decreased expression of AQP2 in this model of diabetes and constitute additional evidence supporting a role for NO in contributing to renal water reabsorption through the modulation of AQP2 expression in this pathological condition. However, we cannot discard that another pathway different from NOS also exists that links L-Arg to AQP2 expression.  相似文献   
39.
Coagulase-negative staphylococci (CoNS) are the microorganisms most frequently isolated from clinical samples and are commonly found in neonatal blood cultures. Oxacillin is an alternative treatment of choice for CoNS infections; however, resistance to oxacillin can have a substantial impact on healthcare by adversely affecting morbidity and mortality. The objective of this study was to detect and characterise oxacillin-resistant CoNS strains in blood cultures of newborns hospitalised at the neonatal ward of the University Hospital of the Faculty of Medicine of Botucatu. One hundred CoNS strains were isolated and the mecA gene was detected in 69 of the CoNS strains, including 73.2% of Staphylococcus epidermidis strains, 85.7% of Staphylococcus haemolyticus strains, 28.6% of Staphylococcus hominis strains and 50% of Staphylococcus lugdunensis strains. Among these oxacillin-resistant CoNS strains, staphylococcal cassette chromosome mec (SCCmec) type I was identified in 24.6%, type II in 4.3%, type III in 56.5% and type IV in 14.5% of the strains. The data revealed an increase in the percentage of CoNS strains isolated from blood cultures from 1991-2009. Furthermore, a predominant SCCmec profile of the oxacillin-resistant CoNS strains isolated from neonatal intensive care units was identified with a prevalence of SCCmec types found in hospital-acquired strains.  相似文献   
40.
The impact on protein evolution of the physical laws that govern folding remains obscure. Here, by analyzing in silico-evolved sequences subjected to evolutionary pressure for fast folding, it is shown that: First, a subset of residues in the thermodynamic folding nucleus is mainly responsible for modulating the protein folding rate. Second and most important, the protein topology itself is of paramount importance in determining the location of these residues in the structure. Further stabilization of the interactions in this nucleus leads to fast folding sequences. Third, these nucleation points restrict the sequence space available to the protein during evolution. Correlated mutations between positions around these hot spots arise in a statistically significant manner, and most involve contacting residues. When a similar analysis is carried out on real proteins, qualitatively similar results are obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号