首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4870篇
  免费   511篇
  国内免费   1篇
  2023年   34篇
  2022年   38篇
  2021年   111篇
  2020年   70篇
  2019年   63篇
  2018年   67篇
  2017年   83篇
  2016年   139篇
  2015年   246篇
  2014年   249篇
  2013年   275篇
  2012年   350篇
  2011年   325篇
  2010年   211篇
  2009年   203篇
  2008年   276篇
  2007年   231篇
  2006年   223篇
  2005年   239篇
  2004年   220篇
  2003年   215篇
  2002年   208篇
  2001年   75篇
  2000年   76篇
  1999年   51篇
  1998年   59篇
  1997年   47篇
  1996年   40篇
  1995年   39篇
  1994年   34篇
  1993年   27篇
  1992年   48篇
  1991年   42篇
  1990年   48篇
  1989年   50篇
  1988年   38篇
  1987年   39篇
  1986年   31篇
  1985年   25篇
  1984年   32篇
  1983年   29篇
  1982年   22篇
  1981年   48篇
  1980年   26篇
  1979年   37篇
  1978年   25篇
  1977年   25篇
  1973年   21篇
  1970年   19篇
  1969年   18篇
排序方式: 共有5382条查询结果,搜索用时 15 毫秒
951.
The goal of this study is to define the effects of TCF4 hemizygosity in the context of a larger segmental deletion of chromosome 18q. Our cohort included 37 individuals with deletions of 18q. Twenty-seven had deletions including TCF4 (TCF4 +/); nine had deletions that did not include TCF4 (TCF4 +/+); and one individual had a microdeletion that included only the TCF4 gene. We compared phenotypic data from the participants’ medical records, survey responses, and in-person evaluations. Features unique to the TCF4 +/ individuals included abnormal corpus callosum, short neck, small penis, accessory and wide-spaced nipples, broad or clubbed fingers, and sacral dimple. The developmental data revealed that TCF4 +/+ individuals were only moderately developmentally delayed while TCF4 +/ individuals failed to reach developmental milestones beyond those typically acquired by 12 months of age. TCF4 hemizygosity also conferred an increased risk of early death principally due to aspiration-related complications. Hemizygosity for TCF4 confers a significant impact primarily with regard to cognitive and motor development, resulting in a very different prognosis for individuals hemizygous for TCF4 when compared to individuals hemizygous for other regions of distal 18q.  相似文献   
952.
In this study we report for the first time the comprehensive inhibitor profiling of the Proteus mirabilis metalloprotease virulence factor ZapA (mirabilysin) using a 160 compound focused library of N-alpha mercaptoamide dipeptides, in order to map the and binding site preferences of this important enzyme. This study has revealed a preference for the aromatic residues tyrosine and tryptophan in and aliphatic residues in . From this library, six compounds were identified which exhibited sub- to low-micromolar Ki values. The most potent inactivator, SH–CO2–Y–V–NH2 was capable of preventing ZapA-mediated hydrolysis of heat-denatured IgA, indicating that these inhibitors may be capable of protecting host proteins against ZapA during colonisation and infection.  相似文献   
953.
This study aimed to determine the importance of repeated increases in blood flow to conduit artery adaptation, using an exercise-independent repeated episodic stimulus. Recent studies suggest that exercise training improves vasodilator function of conduit arteries via shear stress-mediated mechanisms. However, exercise is a complex stimulus that may induce shear-independent adaptations. Nine healthy men immersed their forearms in water at 42°C for three 30-min sessions/wk across 8 wk. During each session, a pneumatic pressure cuff was inflated around one forearm to unilaterally modulate heating-induced increases in shear. Forearm heating was associated with an increase in brachial artery blood flow (P<0.001) and shear rate (P<0.001) in the uncuffed forearm; this response was attenuated in the cuffed limb (P<0.005). Repeated episodic exposure to bilateral heating induced an increase in endothelium-dependent vasodilation in response to 5-min ischemic (P<0.05) and ischemic handgrip exercise (P<0.005) stimuli in the uncuffed forearm, whereas the 8-wk heating intervention did not influence dilation to either stimulus in the cuffed limb. Endothelium-independent glyceryl trinitrate responses were not altered in either limb. Repeated heating increases blood flow to levels that enhance endothelium-mediated vasodilator function in humans. These findings reinforce the importance of the direct impacts of shear stress on the vascular endothelium in humans.  相似文献   
954.
Transactivation of epidermal growth factor receptor (EGFR) may contribute to specific protective responses (e.g. mediated by δ-opioid, bradykinin, or muscarinic receptors). No studies have assessed EGFR involvement in cardioprotection mediated by adenosine receptors (ARs), and the role of EGFR in ischemic preconditioning (IPC) is unclear. We tested EGFR, matrix metalloproteinase (MMP), and heparin-binding EGF (HB-EGF) dependencies of functional protection via A(1)AR agonism or IPC. Pretreatment of mouse hearts with 100 nM of A(1)AR agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) or IPC (3 × 1.5-min ischemia/2-min reperfusion) substantially improved recovery from 25-min ischemia, reducing left ventricular diastolic dysfunction up to 50% and nearly doubling pressure development and positive change in pressure over time (+dP/dt). Benefit with both CCPA and IPC was eliminated by inhibitors of EGFR tyrosine kinase (0.3 μM AG1478), MMP (0.3 μM GM6001), or HB-EGF ligand (0.3 ng/ml CRM197), none of which independently altered postischemic outcome. Phosphorylation of myocardial EGFR, Erk1/2, and Akt increased two- to threefold during A(1)AR agonism, with responses blocked by AG1478, GM6001, and CRM197. Studies in HL-1 myocytes confirm A(1)AR-dependent Erk1/2 phosphorylation is negated by AG1478 or GM6001, and reduced with CRM197 (as was Akt activation). These data collectively reveal that A(1)AR- and IPC-mediated functional protection is entirely EGFR and MMP dependent, potentially involving the HB-EGF ligand. Myocardial survival kinase activation (Erk1/2, Akt) by A(1)AR agonism is similarly MMP/HB-EGF/EGFR dependent. Thus MMP-mediated EGFR activation appears essential to cardiac protection and signaling via A(1)ARs and preconditioning.  相似文献   
955.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by protein phosphorylation and chronically by protein synthesis. No studies have systematically investigated the phosphorylation of these sites in vivo in response to stressors. We specifically investigated the phosphorylation of TH occurring within the first 24 h in response to the social defeat stress in the rat adrenal, the locus coeruleus, substantia nigra and ventral tegmental area. Five groups were investigated; home cage control (HCC), two groups that underwent social defeat (SD+) which were sacrificed either 10 min or 24 h after the end of the protocol and two groups that were put into the cage without the resident being present (SD−) which were sacrificed at time points identical to the SD+. We found at 10 min there were significant increases in serine 40 and 31 phosphorylation levels in the locus coeruleus in SD+ compared to HCC and increases in serine 40 phosphorylation levels in the substantia nigra in SD+ compared to SD−. We found at 24 h there were significant increases in serine 19 phosphorylation levels in the ventral tegmental area in SD+ compared to HCC and decreases in serine 40 phosphorylation levels in the adrenal in SD+ compared to SD−. These findings suggest that the regulation of TH phosphorylation in different catecholamine-producing cells varies considerably and is dependent on both the nature of the stressor and the time at which the response is analysed.  相似文献   
956.
Escherichia coli cells, expressing 4-hydroxyphenylacetate 3-hydroxylase, fully transformed 4-halogenated phenols to their equivalent catechols as single products in shaken flasks. 4-Fluorophenol was transformed at a rate 1.6, 1.8, and 3.4-fold higher than the biotransformation of 4-chloro-, 4-bromo-, and 4-iodo-phenol, respectively. A scale-up from shaken flask to a 5 L stirred tank bioreactor was undertaken to develop a bioprocess for the production of 4-substituted halocatechols at higher concentrations and scale. In a stirred tank reactor, the optimized conditions for induction of 4-HPA hydroxylase expression were at 37 °C for 3 h. The rate of biotransformation of 4-fluorophenol to 4-fluorocatechol by stirred tank bioreactor grown cells was the same at 1 and 4.8 mM (5.13 μmol/min/g CDW) once the ratio of biocatalyst (E. coli CDW) to substrate concentration (mM) was maintained at 2:1. At 10.8 mM 4-fluorophenol, the rate of 4-fluorocatechol formation decreased by 4.7-fold. However, the complete transformation of 1.3 g of 4-fluorophenol (10.8 mM) to 4-fluorocatechol was achieved within 7 h in a 1 L reaction volume. Similar to 4-fluorophenol, other 4-substituted halophenols were completely transformed to 4-halocatechols at 2 mM within a 1–2 h period. An increase in 4-halophenol concentration to 4.8 mM resulted in a 2.5–20-fold decrease in biotransformation efficiency depending on the substrate tested. Organic solvent extraction of the 4-halocatechol products followed by column chromatography resulted in the production of purified products with a final yield of between 33% and 38%.  相似文献   
957.
958.
Skibicka KP  Dickson SL 《Peptides》2011,32(11):2265-2273
The incidence of obesity is increasing at an alarming rate and this worldwide epidemic represents a significant decrease in life span and quality of life of a large part of the affected population. Therefore an understanding of mechanisms underlying food overconsumption and obesity development is urgent and essential to find potential treatments. Research investigating mechanisms underlying obesity and the control of food intake has recently experienced a major shift in focus, from the brain's hypothalamus to additional important neural circuits controlling emotion, cognition and motivated behavior. Among them, the mesolimbic system, and the changes in reward and motivated behavior for food, emerge as new promising treatment targets. Furthermore, there is also growing appreciation of the impact of peripheral hormones that signal nutrition status to the mesolimbic areas, and especially the only known circulating orexigenic hormone, ghrelin. This review article provides a synthesis of recent evidence concerning the impact of manipulation of ghrelin and its receptor on models of food reward/food motivation behavior and the mesolimbic circuitry. Particular attention is given to the potential neurocircuitry and neurotransmitter systems downstream of ghrelin's effects on food reward.  相似文献   
959.
CPR (NADPH-cytochrome P450 reductase) is a multidomain protein containing two flavin-containing domains joined by a connecting domain thought to control the necessary movements of the catalytic domains during electronic cycles. We present a detailed biochemical analysis of two chimaeric CPRs composed of the association of human or yeast FMN with the alternative connecting/FAD domains. Despite the assembly of domains having a relatively large evolutionary distance between them, our data support the idea that the integrity of the catalytic cycle is conserved in our chimaeric enzymes, whereas the recognition, interactions and positioning of both catalytic domains are probably modified. The main consequences of the chimaerogenesis are a decrease in the internal electron-transfer rate between both flavins correlated with changes in the geometry of chimaeric CPRs in solution. Results of the present study highlight the role of the linker and connecting domain in the recognition at the interfaces between the catalytic domains and the impact of interdomain interactions on the redox potentials of the flavins, the internal electron-transfer efficiency and the global conformation and dynamic equilibrium of the CPRs.  相似文献   
960.
ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the β-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号