首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4769篇
  免费   467篇
  国内免费   1篇
  2023年   33篇
  2022年   52篇
  2021年   104篇
  2020年   74篇
  2019年   52篇
  2018年   66篇
  2017年   85篇
  2016年   137篇
  2015年   244篇
  2014年   262篇
  2013年   259篇
  2012年   350篇
  2011年   322篇
  2010年   204篇
  2009年   214篇
  2008年   294篇
  2007年   242篇
  2006年   243篇
  2005年   241篇
  2004年   223篇
  2003年   207篇
  2002年   201篇
  2001年   54篇
  2000年   57篇
  1999年   56篇
  1998年   61篇
  1997年   42篇
  1996年   40篇
  1995年   40篇
  1994年   30篇
  1993年   25篇
  1992年   41篇
  1991年   38篇
  1990年   41篇
  1989年   37篇
  1988年   35篇
  1987年   44篇
  1986年   34篇
  1985年   29篇
  1984年   40篇
  1983年   27篇
  1982年   20篇
  1981年   36篇
  1980年   23篇
  1979年   24篇
  1978年   23篇
  1977年   24篇
  1976年   18篇
  1974年   15篇
  1973年   18篇
排序方式: 共有5237条查询结果,搜索用时 31 毫秒
141.
142.
The effect of MHC polymorphism on individual fitness variation in the wild remains equivocal; however, much evidence suggests that heterozygote advantage is a major determinant. To understand the contribution of MHC polymorphism to individual disease resistance or susceptibility in natural populations, we investigated two MHC class II B loci, DQB and DRB, in the New Zealand sea lion (NZSL, Phocarctos hookeri). The NZSL is a threatened species which is unusually susceptible to death by bacterial infection at an early age; it has suffered three bacterial induced epizootics resulting in high mortality levels of young pups since 1997. The MHC DQB and DRB haplotypes of dead NZSL pups with known cause of death (bacteria, enteritis or trauma) were sequenced and reconstructed, compared to pups that survived beyond 2 months of age, and distinct MHC DRB allele frequency and genotype differences were identified. Two findings were striking: (i) one DRB allele was present only in dead pups, and (ii) one heterozygous DRB genotype, common in live pups, was absent from dead pups. These results are consistent with some functional relationship with these variants and suggest heterozygote advantage is operating at DRB. We found no association between heterozygosity and fitness at 17 microsatellite loci, indicating that general heterozygosity is not responsible for the effect on fitness detected here. This result may be a consequence of recurrent selection by multiple pathogen assault over recent years and highlights the importance of heterozygote advantage at MHC as a potential mechanism for fitness differences in wild populations.  相似文献   
143.
Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.  相似文献   
144.
The involvement of embryonic cell surface proteoglycans in the attachment and outgrowth of cultured mouse embryos has been investigated. Several lines of evidence indicate that periimplantation stage blastocysts express heparin/heparan sulfate proteoglycans on their cell surfaces that can mediate embryo attachment and trophoblast outgrowth on a variety of matrices. First, in the presence of soluble heparin, the rate at which embryos attach and outgrow on laminin, fibronectin, or monolayers of uterine epithelial cells is reduced considerably. In the case of fibronectin, the rate of outgrowth in the presence of the heparin is slower than in the presence of the Arg-Gly-Asp-Ser-containing peptide that is recognized by a fibronectin receptor. Embryos also attach and exhibit a limited ability to outgrow on platelet factor IV, a heparin binding protein that does not possess the additional binding domains of laminin or fibronectin. Attachment on platelet factor IV is inhibited by heparin. Second, cell surface digestion of attachment-component embryos with heparinase, but not chondroitinase ABC, slows the rate of outgrowth on tissue culture plates in the presence of serum. Third, selective staining for sulfated molecules on the trophectoderm surface of periimplantation stage embryos indicates that such molecules are abundant and uniformly distributed on these cell surfaces. Last, heparin/heparan sulfate proteoglycans are detected as major cell surface components of embryos using vectorial labeling with lactoperoxidase and Na125I. Collectively, these data indicate that heparin/heparan sulfate-bearing molecules have a direct role in attachment and outgrowth of implantation stage blastocysts.  相似文献   
145.
146.
The temporal and spatial expression of transforming growth factor (TGF)-beta(1) and connective tissue growth factor (CTGF) was assessed in the left ventricle of a myocardial infarction (MI) model of injury with and without angiotensin-converting enzyme (ACE) inhibition. Coronary artery ligated rats were killed 1, 3, 7, 28, and 180 days after MI. TGF-beta(1), CTGF, and procollagen alpha1(I) mRNA were localized by in situ hybridization, and TGF-beta(1) and CTGF protein levels by immunohistochemistry. Collagen protein was measured using picrosirius red staining. In a separate group, rats were treated for 6 months with an ACE inhibitor. There were temporal and regional differences in the expression of TGF-beta(1), CTGF, and collagen after MI. Procollagen alpha1(I) mRNA expression increased in the border zone and scar peaking 1 week after MI, whereas collagen protein increased in all areas of the heart over the 180 days. Expression of TGF-beta(1) mRNA and protein showed major increases in the border zone and scar peaking 1 week after MI. The major increases in CTGF mRNA and protein occurred in the viable myocardium at 180 days after MI. Long-term ACE inhibition reduced left ventricular mass and decreased fibrosis in the viable myocardium, but had no effect on cardiac TGF-beta(1) or CTGF. TGF-beta(1) is involved in the initial, acute phase of inflammation and repair after MI, whereas CTGF is involved in the ongoing fibrosis of the heart. The antifibrotic benefits of captopril are not mediated through a reduction in CTGF.  相似文献   
147.
Transmissible spongiform encephalopathies are characterised by widespread deposition of fibrillar and/or plaque-like forms of the prion protein. These aggregated forms are produced by misfolding of the normal prion protein, PrP(C), to the disease-associated form, PrP(Sc), through mechanisms that remain elusive but which require either direct or indirect interaction between PrP(C) and PrP(Sc) isoforms. A wealth of evidence implicates other non-PrP molecules as active participants in the misfolding process, to catalyse and direct the conformational conversion of PrP(C) or to provide a scaffold ensuring correct alignment of PrP(C) and PrP(Sc) during conversion. Such molecules may be specific to different scrapie strains to facilitate differential prion protein misfolding. Since molecular cofactors may become integrated into the growing protein fibril during prion conversion, we have investigated the proteins contained in prion disease-specific deposits by shotgun proteomics of scrapie-associated fibrils (SAF) from mice infected with 3 different strains of mouse-passaged scrapie. Concomitant use of negative control preparations allowed us to identify and discount proteins that are enriched non-specifically by the SAF isolation protocol. We found several proteins that co-purified specifically with SAF from infected brains but none of these were reproducibly and demonstrably specific for particular scrapie strains. The α-chain of Na(+)/K(+)-ATPase was common to SAF from all 3 strains and we tested the ability of this protein to modulate in vitro misfolding of recombinant PrP. Na(+)/K(+)-ATPase enhanced the efficiency of disease-specific conversion of recombinant PrP suggesting that it may act as a molecular cofactor. Consistent with previous results, the same protein inhibited fibrillisation kinetics of recombinant PrP. Since functional interactions between PrP(C) and Na(+)/K(+)-ATPase have previously been reported in astrocytes, our data highlight this molecule as a key link between PrP function, dysfunction and misfolding.  相似文献   
148.
Neisseria meningitidis (Nm) is a leading cause of septicemia in childhood. Nm septicemia is unique with respect to very quick disease progression, high in vivo bacterial replication rate and its considerable mortality. Nm circumvents major mechanisms of innate immunity such as complement system and phagocytosis. Neutrophil extracellular traps (NETs) are formed from neutrophils during systemic infection and are suggested to contain invading microorganisms. Here, we investigated the interaction of Nm with NETs. Both, meningococci and spontaneously released outer membrane vesicles (SOMVs) were potent NET inducers. NETs were unable to kill NET bound meningococci, but slowed down their proliferation rate. Using Nm as model organism we identified three novel mechanisms how bacteria can evade NET‐mediated killing: (i) modification of lipid A of meningococcal LPS with phosphoethanolamine protected Nm from NET‐bound cathepsin G; (ii) expression of the high‐affinity zinc uptake receptor ZnuD allowed Nm to escape NET‐mediated nutritional immunity; (iii) binding of SOMVs to NETs saved Nm from NET binding and the consequent bacteriostatic effect. Escape from NETs may contribute to the most rapid progression of meningococcal disease. The induction of NET formation by Nm in vivo might aggravate thrombosis in vessels ultimately directing to disseminated intravascular coagulation (DIC).  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号