首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3837篇
  免费   376篇
  国内免费   1篇
  2023年   32篇
  2022年   47篇
  2021年   97篇
  2020年   65篇
  2019年   46篇
  2018年   59篇
  2017年   76篇
  2016年   126篇
  2015年   221篇
  2014年   232篇
  2013年   228篇
  2012年   320篇
  2011年   294篇
  2010年   180篇
  2009年   182篇
  2008年   246篇
  2007年   200篇
  2006年   199篇
  2005年   204篇
  2004年   176篇
  2003年   178篇
  2002年   164篇
  2001年   31篇
  2000年   31篇
  1999年   32篇
  1998年   50篇
  1997年   33篇
  1996年   27篇
  1995年   26篇
  1994年   22篇
  1993年   19篇
  1992年   21篇
  1991年   17篇
  1990年   21篇
  1989年   13篇
  1988年   14篇
  1987年   14篇
  1984年   19篇
  1983年   12篇
  1981年   27篇
  1980年   13篇
  1979年   16篇
  1978年   10篇
  1977年   19篇
  1976年   10篇
  1974年   8篇
  1973年   13篇
  1970年   10篇
  1969年   8篇
  1968年   10篇
排序方式: 共有4214条查询结果,搜索用时 15 毫秒
991.
Practice makes perfect, but the neural substrates of trial-to-trial learning in motor tasks remain unclear. There is some evidence that the basal ganglia process feedback-related information to modify learning in essentially cognitive tasks , but the evidence that these key motor structures are involved in offline feedback-related improvement of performance in motor tasks is paradoxically limited. Lesion studies in adult zebra finches suggest that the avian basal ganglia are involved in the transmission or production of an error signal during song . However, patients with Huntington's disease, in which there is prominent basal ganglia dysfunction, are not impaired in error-dependent modulation of future trial performance . By directly recording from the subthalamic nucleus in patients with Parkinson's disease, we demonstrate that this nucleus processes error in trial performance at short latency. Local evoked activity is greatest in response to smallest errors and influences the programming of subsequent movements. Accordingly, motor parameters are least likely to change after the greatest evoked responses so that accurately performed trials tend to precede other accurate trials. This relationship is disrupted by electrical stimulation of the nucleus at high frequency. Thus, the human subthalamic nucleus is involved in feedback-based learning.  相似文献   
992.
The protein Ure2 from baker's yeast is associated with a heritable and transmissible phenotypic change in the yeast Saccharomyces cerevisiae. Such prion properties are thought to arise from the fact that Ure2p is able to self-assemble into insoluble fibrils. Assemblies of Ure2p are composed of full-length proteins in which the structure of the globular, functional, C-terminal domain is retained. We have carried out structural studies on full-length, wild-type Ure2p fibrils with a regularly twisted morphology. Using electron microscopy and cryo-electron microscopy with image analysis we show high-resolution images of the twisted filaments revealing details within the fibrillar structure. We examine these details in light of recent proposed models and discuss how this new information contributes to an understanding of the architecture of Ure2p yeast prion fibrils.  相似文献   
993.
The mechanisms through which trophic interactions between species are indirectly mediated by distant members in a food web have received increasing attention in the field of ecology of multitrophic interactions. Scarcely studied aspects include the effects of varying plant chemistry on herbivore immune defences against parasitoids. We investigated the effects of constitutive and herbivore-induced variation in the nutritional quality of wild and cultivated populations of cabbage (Brassica oleracea) on the ability of small cabbage white Pieris rapae (Lepidoptera, Pieridae) larvae to encapsulate eggs of the parasitoid Cotesia glomerata (Hymenoptera, Braconidae). Average encapsulation rates in caterpillars parasitised as first instars were low and did not differ among plant populations, with caterpillar weight positively correlating with the rates of encapsulation. When caterpillars were parasitised as second instar larvae, encapsulation of eggs increased. Caterpillars were larger on the cultivated Brussels sprouts plants and exhibited higher levels of encapsulation compared with caterpillars on plants of either of the wild cabbage populations. Observed differences in encapsulation rates between plant populations could not be explained exclusively by differences in host growth on the different Brassica populations. Previous herbivore damage resulted in a reduction in the larval weight of subsequent herbivores with a concomitant reduction in encapsulation responses on both Brussels sprouts and wild cabbage plants. To our knowledge this is the first study demonstrating that constitutive and herbivore-induced changes in plant chemistry act in concert, affecting the immune response of herbivores to parasitism. We argue that plant-mediated immune responses of herbivores may be important in the evaluation of fitness costs and benefits of herbivore diet on the third trophic level.  相似文献   
994.
Growing empirical evidence suggests that aboveground and belowground multitrophic communities interact. However, investigations that comprehensively explore the impacts of above‐ and belowground third and higher trophic level organisms on plant and herbivore performance are thus far lacking. We tested the hypotheses that above‐ and belowground higher trophic level organisms as well as decomposers affect plant and herbivore performance and that these effects cross the soil–surface boundary. We used a well‐validated simulation model that is individual‐based for aboveground trophic levels such as shoot herbivores, parasitoids, and hyperparasitoids while considering belowground herbivores and their antagonists at the population level. We simulated greenhouse experiments by removing trophic levels and decomposers from the simulations in a factorial design. Decomposers and above‐ and belowground third trophic levels affected plant and herbivore mortality, root biomass, and to a lesser extent shoot biomass. We also tested the effect of gradual modifications of the interactions between different trophic level organisms with a sensitivity analysis. Shoot and root biomass were highly sensitive to the impact of the fourth trophic level. We found effects that cross the soil surface, such as aboveground herbivores and parasitoids affecting root biomass and belowground herbivores influencing aboveground herbivore mortality. We conclude that higher trophic level organisms and decomposers can strongly influence plant and herbivore performance. We propose that our modelling framework can be used in future applications to quantitatively explore the possible outcomes of complex above‐ and belowground multitrophic interactions under a range of environmental conditions and species compositions.  相似文献   
995.
Even though ammonia is considered to underlie nervous system symptoms of dysfunction during hyperammonemia, lactate, which increases as a metabolic consequence of high ammonia levels, might also be a contributing factor. The data presented here show that NH4Cl (5 mM) mediates astroglial cell swelling, and that treatment with NH4Cl or lactate (25 mM) causes rearrangements of actin filaments and reduces astroglial glutamate uptake capacity. Co-application with BaCl2, which blocks astroglial uptake of NH4 +, prevents NH4Cl-mediated cell swelling and rearrangement of actin filaments, but does not reduce NH4Cl-induced glutamate uptake capacity inhibition. Neither NH4Cl nor lactate affected glutamate uptake or protein expression in microglial cultures, indicating that astroglial cells are more susceptible to the neurotoxic affects of ammonia. Our results suggest that ammonium underlies brain edema, but that lactate can contribute to some of the cellular dysfunctions associated with elevated cerebral levels of ammonia.  相似文献   
996.
997.
The ADP-ribosylation factor-like (Arl) family of small G proteins are involved in the regulation of diverse cellular processes. Arl2 does not appear to be membrane localized and has been implicated as a regulator of microtubule dynamics. The downstream effector for Arl2, Binder of Arl 2 (BART) has no known function but, together with Arl2, can enter mitochondria and bind the adenine nucleotide transporter. We have solved the solution structure of BART and show that it forms a novel fold composed of six alpha-helices that form three interlocking "L" shapes. Analysis of the backbone dynamics reveals that the protein is highly anisotropic and that the loops between the central helices are dynamic. The regions involved in the binding of Arl2 were mapped onto the surface of BART and are found to localize to these loop regions. BART has faces of differing charge and structural elements, which may explain how it can interact with other proteins.  相似文献   
998.
999.
Hyaluronan is a large glycosaminoglycan that is abundant in the interstitium of the renal medulla/papilla. Papillary hyaluronan increases during hydration and decreases during dehydration. Due to its gel properties and ability to retain large volumes of water, hyaluronan plays a role in renal water handling by affecting the permeability characteristics of the papillary interstitium. The focus of the present investigation was the regulation of hyaluronan metabolism in the kidney, especially during variations in hydration status.In control papillas, HAS 2 mRNA was heavily expressed and HAS 1 and 3 mRNA were weakly distributed. HYALs 1–3 mRNA were found at high expression and HYAL 4 was only weakly expressed. In hydrated animals, the diuretic response (12-fold) was followed by a 58% elevation in papillary hyaluronan and a 45% reduction in the excreted urinary hyaluronidase activity. No difference was determined in HAS 1–3 mRNA or HYAL 1, 3–4 mRNA expression, suggesting a change in activity rather than amount of protein. In dehydrated animals, antidiuresis was followed by a 22% reduction in papillary hyaluronan and a 62% elevation in excreted urinary hyaluronidase activity. Plasma vasopressin was 2.8-fold higher in dehydrated vs. hydrated rats.In conclusion, HAS 2 appears a major contributor to the baseline levels of hyaluronan. Reduced HAS 2 gene expression and increased excreted urinary hyaluronidase activity during dehydration contribute to the reduced amount of hyaluronan and to antidiuretic response.  相似文献   
1000.
Exopolysaccharides, either succinoglycan or galactoglucan, are essential for the establishment of the symbiosis between Sinorhizobium meliloti and Medicago sativa (alfalfa). The ExoS/ChvI two‐component regulatory system is known as a regulator of succinoglycan production but the genes that are directly regulated by ChvI have not been determined. Difficulty isolating exoS and chvI null mutants has prompted the suggestion that these genes are essential for S. meliloti viability. We have successfully isolated exoS and chvI null mutants using a merodiploid‐facilitated strategy. We present evidence that the S. meliloti ExoS/ChvI two‐component regulatory system is essential for symbiosis with alfalfa. Phenotypic analyses of exoS and chvI null mutant strains demonstrate that ExoS/ChvI controls both succinoglycan and galactoglucan production and is required for growth on over 21 different carbon sources. These new findings suggest that the ExoS/ChvI regulatory targets might not be the exo genes that are specific for succinoglycan biosynthesis but rather genes that have common influence on both succinoglycan and galactoglucan production. Other studied alpha‐proteobacteria ExoS/ChvI orthologues are required for the bacteria to invade or persist in host cells and thus we present more evidence that this two‐component regulatory system is essential for alpha‐proteobacterial host interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号