首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   35篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   11篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   9篇
  2016年   12篇
  2015年   30篇
  2014年   20篇
  2013年   23篇
  2012年   29篇
  2011年   35篇
  2010年   16篇
  2009年   15篇
  2008年   15篇
  2007年   22篇
  2006年   19篇
  2005年   21篇
  2004年   23篇
  2003年   11篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1959年   1篇
  1954年   2篇
  1936年   1篇
  1903年   1篇
  1887年   1篇
排序方式: 共有380条查询结果,搜索用时 453 毫秒
41.
42.

Background

Antiretroviral Treatment (ART) significantly reduces HIV transmission. We conducted a cost-effectiveness analysis of the impact of expanded ART in South Africa.

Methods

We model a best case scenario of 90% annual HIV testing coverage in adults 15–49 years old and four ART eligibility scenarios: CD4 count <200 cells/mm3 (current practice), CD4 count <350, CD4 count <500, all CD4 levels. 2011–2050 outcomes include deaths, disability adjusted life years (DALYs), HIV infections, cost, and cost per DALY averted. Service and ART costs reflect South African data and international generic prices. ART reduces transmission by 92%. We conducted sensitivity analyses.

Results

Expanding ART to CD4 count <350 cells/mm3 prevents an estimated 265,000 (17%) and 1.3 million (15%) new HIV infections over 5 and 40 years, respectively. Cumulative deaths decline 15%, from 12.5 to 10.6 million; DALYs by 14% from 109 to 93 million over 40 years. Costs drop $504 million over 5 years and $3.9 billion over 40 years with breakeven by 2013. Compared with the current scenario, expanding to <500 prevents an additional 585,000 and 3 million new HIV infections over 5 and 40 years, respectively. Expanding to all CD4 levels decreases HIV infections by 3.3 million (45%) and costs by $10 billion over 40 years, with breakeven by 2023. By 2050, using higher ART and monitoring costs, all CD4 levels saves $0.6 billion versus current; other ART scenarios cost $9–194 per DALY averted. If ART reduces transmission by 99%, savings from all CD4 levels reach $17.5 billion. Sensitivity analyses suggest that poor retention and predominant acute phase transmission reduce DALYs averted by 26% and savings by 7%.

Conclusion

Increasing the provision of ART to <350 cells/mm3 may significantly reduce costs while reducing the HIV burden. Feasibility including HIV testing and ART uptake, retention, and adherence should be evaluated.  相似文献   
43.

Background

Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20–50 maxicircles (∼20 kb) and thousands of minicircles (0.5–10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30–35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs.

Methodology/Principal Findings

To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi.

Conclusions/Significance

mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination is geographically widespread and continues to influence the natural population structure of TcI, a conclusion which challenges the traditional paradigm of clonality in T. cruzi.  相似文献   
44.
MOTIVATION: InFiRe, Insertion Finder via Restriction digest, is a novel software tool that allows for the computational identification of transposon insertion sites in known bacterial genome sequences after transposon mutagenesis experiments. The approach is based on the fact that restriction endonuclease digestions of bacterial DNA yield a unique pattern of DNA fragments with defined sizes. Transposon insertion changes the size of the hosting DNA fragment by a known number of base pairs. The exact size of this fragment can be determined by Southern blot hybridization. Subsequently, the position of insertion can be identified with computational analysis. The outlined method provides a solid basis for the establishment of a new high-throughput technology. AVAILABILITY AND IMPLEMENTATION: The software is freely available on our web server at www.infire.tu-bs.de. The algorithm was implemented in the statistical programming language R. For the most flexible use, InFiRe is provided in two different versions. A web interface offers the convenient use in a web browser. In addition, the software and source code is freely available for download as R-packages on our website. CONTACT: m.steinert@tu-bs.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   
45.
46.
Septins are conserved GTP-binding proteins that assemble into heteromeric complexes that form filaments and higher-order structures in cells. What directs filament assembly, determines the size of higher-order septin structures, and governs septin dynamics is still not well understood. We previously identified two kinases essential for septin ring assembly in the filamentous fungus Ashbya gossypii and demonstrate here that the septin Shs1p is multiphosphorylated at the C-terminus of the protein near the predicted coiled-coil domain. Expression of the nonphosphorylatable allele shs1-9A does not mimic the loss of the kinase nor does complete truncation of the Shs1p C-terminus. Surprisingly, however, loss of the C-terminus or the predicted coiled-coil domain of Shs1p generates expanded zones of septin assemblies and ectopic septin fibers, as well as aberrant cell morphology. The expanded structures form coincident with ring assembly and are heteromeric. Interestingly, while septin recruitment to convex membranes is increased, septin localization is diminished at concave membranes in these mutants. Additionally, the loss of the coiled-coil leads to increased mobility of Shs1p. These data indicate the coiled-coil of Shs1p is an important negative regulator of septin ring size and mobility, and its absence may make septin assembly sensitive to local membrane curvature.  相似文献   
47.

Background

Injecting drug use continues to be a primary driver of HIV epidemics in many parts of the world. Many people who inject drugs (PWID) are sexually active, so it is possible that high-seroprevalence HIV epidemics among PWID may initiate self-sustaining heterosexual transmission epidemics.

Methods

Fourteen countries that had experienced high seroprevalence (<20%) HIV epidemics among PWID and had reliable data for injection drug use (IDU) and heterosexual cases of HIV or AIDS were identified. Graphs of newly reported HIV or AIDS cases among PWID and heterosexuals were constructed to identify temporal relationships between the two types of epidemics. The year in which newly reported cases among heterosexuals surpassed newly reported cases among PWID, aspects of the epidemic curves, and epidemic case histories were analyzed to assess whether it was “plausible” or “highly unlikely” that the HIV epidemic among PWID might have initiated the heterosexual epidemic in each country.

Results

Transitions have occurred in 11 of the 14 countries. Two types of temporal relationships between IDU and heterosexual HIV epidemics were identified, rapid high incidence transitions vs. delayed, low incidence transitions. In six countries it appears “plausible” that the IDU epidemic initiated a heterosexual epidemic, and in five countries it appears “highly unlikely” that the IDU epidemic initiated a heterosexual epidemic. A rapid decline in incidence among PWID after the peak year of new cases and national income were the best predictors of the “highly unlikely” initiation of a heterosexual epidemic.

Discussion

Transitions from IDU concentrated epidemics to heterosexual epidemics are common in countries with high seroprevalence among PWID though there are distinct types of transitions. Interventions to immediately reduce HIV incidence among PWID may reduce the likelihood that an IDU epidemic may initiate a heterosexual epidemic.  相似文献   
48.
49.
50.
The host-pathogen combinations—Malus domestica (apple)/`Candidatus Phytoplasma mali´, Prunus persica (peach)/`Ca. P. prunorum´ and Pyrus communis (pear)/`Ca. P. pyri´ show different courses of diseases although the phytoplasma strains belong to the same 16SrX group. While infected apple trees can survive for decades, peach and pear trees die within weeks to few years. To this date, neither morphological nor physiological differences caused by phytoplasmas have been studied in these host plants. In this study, phytoplasma-induced morphological changes of the vascular system as well as physiological changes of the phloem sap and leaf phytohormones were analysed and compared with non-infected plants. Unlike peach and pear, infected apple trees showed substantial reductions in leaf and vascular area, affecting phloem mass flow. In contrast, in infected pear mass flow and physicochemical characteristics of phloem sap increased. Additionally, an increased callose deposition was detected in pear and peach leaves but not in apple trees in response to phytoplasma infection. The phytohormone levels in pear were not affected by an infection, while in apple and peach trees concentrations of defence- and stress-related phytohormones were increased. Compared with peach and pear trees, data from apple suggest that the long-lasting morphological adaptations in the vascular system, which likely cause reduced sap flow, triggers the ability of apple trees to survive phytoplasma infection. Some phytohormone-mediated defences might support the tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号