首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   34篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   6篇
  2019年   3篇
  2018年   4篇
  2017年   8篇
  2016年   14篇
  2015年   32篇
  2014年   26篇
  2013年   26篇
  2012年   29篇
  2011年   35篇
  2010年   14篇
  2009年   17篇
  2008年   14篇
  2007年   25篇
  2006年   22篇
  2005年   23篇
  2004年   26篇
  2003年   14篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1966年   2篇
  1903年   1篇
  1887年   1篇
排序方式: 共有396条查询结果,搜索用时 34 毫秒
61.
62.
The vascular smooth muscle cell (SMC)-specific isoform of α-actin (ACTA2) is a major component of the contractile apparatus in SMCs located throughout the arterial system. Heterozygous ACTA2 mutations cause familial thoracic aortic aneurysms and dissections (TAAD), but only half of mutation carriers have aortic disease. Linkage analysis and association studies of individuals in 20 families with ACTA2 mutations indicate that mutation carriers can have a diversity of vascular diseases, including premature onset of coronary artery disease (CAD) and premature ischemic strokes (including Moyamoya disease [MMD]), as well as previously defined TAAD. Sequencing of DNA from patients with nonfamilial TAAD and from premature-onset CAD patients independently identified ACTA2 mutations in these patients and premature onset strokes in family members with ACTA2 mutations. Vascular pathology and analysis of explanted SMCs and myofibroblasts from patients harboring ACTA2 suggested that increased proliferation of SMCs contributed to occlusive diseases. These results indicate that heterozygous ACTA2 mutations predispose patients to a variety of diffuse and diverse vascular diseases, including TAAD, premature CAD, ischemic strokes, and MMD. These data demonstrate that diffuse vascular diseases resulting from either occluded or enlarged arteries can be caused by mutations in a single gene and have direct implications for clinical management and research on familial vascular diseases.  相似文献   
63.
Population studies of arbuscular mycorrhizal fungi (AMF) have traditionally been achieved by indirect analyses of soil-borne spore populations. These studies are not necessarily reflective of populations of AMF within the roots. Advances in molecular biology have revolutionized the analysis of fungal populations colonizing roots and forming mycorrhizas. Initially these studies were qualitative and reported presence or absence of particular AMF species in soils or in roots for comparison between different environments. More recently, the methodology has developed for direct quantification of AMF within roots. Quantitative PCR provides the means to study spatial distribution and individual quantification of AMF in mixed communities over time. In this review, we discuss the progress and application of indirect, direct and finally quantitative methodologies for studying arbuscular mycorrhizal communities. We conclude that the molecular tools now exist to quantitatively analyse the effect of environment, management or inoculation of soils on AMF communities within roots.  相似文献   
64.
65.
66.
Development and repair of the skeletal system and other organs is highly dependent on precise regulation of bone morphogenetic proteins (BMPs), their receptors, and their intracellular signaling proteins known as Smads. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, control of cellular responsiveness to BMPs is now a critical area that is poorly understood. We determined that LMP-1, a LIM domain protein capable of inducing de novo bone formation, interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads. In the region of LMP responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and can effectively compete with Smad1 and Smad5 for binding. We have shown that small peptides containing this motif can mimic the ability to block Smurf1 from binding Smads. This novel interaction of LMP-1 with the WW2 domain of Smurf1 to block Smad binding results in increased cellular responsiveness to exogenous BMP and demonstrates a novel regulatory mechanism for the BMP signaling pathway.  相似文献   
67.
Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular free calcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulin-dependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.  相似文献   
68.
69.
All environments including hypersaline ones harbor measurable concentrations of dissolved extracellular DNA (eDNA) that can be utilized by microbes as a nutrient. However, it remains poorly understood which eDNA components are used, and who in a community utilizes it. For this study, we incubated a saltern microbial community with combinations of carbon, nitrogen, phosphorus, and DNA, and tracked the community response in each microcosm treatment via 16S rRNA and rpoB gene sequencing. We show that microbial communities used DNA only as a phosphorus source, and provision of other sources of carbon and nitrogen was needed to exhibit a substantial growth. The taxonomic composition of eDNA in the water column changed with the availability of inorganic phosphorus or supplied DNA, hinting at preferential uptake of eDNA from specific organismal sources. Especially favored for growth was eDNA from the most abundant taxa, suggesting some haloarchaea prefer eDNA from closely related taxa. The preferential eDNA consumption and differential growth under various nutrient availability regimes were associated with substantial shifts in the taxonomic composition and diversity of microcosm communities. Therefore, we conjecture that in salterns the microbial community assembly is driven by the available resources, including eDNA.Subject terms: Metagenomics, Microbial ecology  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号