首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   33篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   12篇
  2015年   31篇
  2014年   22篇
  2013年   23篇
  2012年   28篇
  2011年   35篇
  2010年   15篇
  2009年   15篇
  2008年   13篇
  2007年   19篇
  2006年   19篇
  2005年   20篇
  2004年   23篇
  2003年   10篇
  2002年   9篇
  1998年   3篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1903年   1篇
  1887年   1篇
排序方式: 共有354条查询结果,搜索用时 815 毫秒
81.
82.
BACKGROUND: Closure of the cranial neural tube during embryogenesis is a crucial process in development of the brain. Failure of this event results in the severe neural tube defect (NTD) exencephaly, the developmental forerunner of anencephaly. METHODS: The requirement for methylation cycle function in cranial neural tube closure was tested by treatment of cultured mouse embryos with cycloleucine or ethionine, inhibitors of methionine adenosyl transferase. Embryonic phenotypes were investigated by histological analysis, and immunostaining was performed for markers of proliferation and apoptosis. Methylation cycle intermediates s-adenosylmethionine and s-adenosylhomocysteine were also quantitated by tandem mass spectrometry. RESULTS: Ethionine and cycloleucine treatments significantly reduced the ratio of abundance of s-adenosylmethionine to s-adenosylhomocysteine and are, therefore, predicted to suppress the methylation cycle. Exposure to these inhibitors during the period of cranial neurulation caused a high incidence of exencephaly, in the absence of generalized toxicity, growth retardation, or developmental delay. Reduced neuroepithelial thickness and reduced density of cranial mesenchyme were detected in ethionine-treated but not cycloleucine-treated embryos that developed exencephaly. Reduced mesenchymal density is a potential cause of ethionine-induced exencephaly, although we could not detect a causative alteration in proliferation or apoptosis prior to failure of neural tube closure. CONCLUSIONS: Adequate functioning of the methylation cycle is essential for cranial neural tube closure in the mouse, suggesting that suppression of the methylation cycle could also increase the risk of human NTDs. We hypothesize that inhibition of the methylation cycle causes NTDs due to disruption of crucial reactions involving methylation of DNA, proteins or other biomolecules.  相似文献   
83.
RNA helicases are molecular motors that are involved in virtually all aspects of RNA metabolism. Eukaryotic initiation factor (eIF) 4A is the prototypical member of the DEAD-box family of RNA helicases. It is thought to use energy from ATP hydrolysis to unwind mRNA structure and, in conjunction with other translation factors, it prepares mRNA templates for ribosome recruitment during translation initiation. In screening marine extracts for new eukaryotic translation initiation inhibitors, we identified the natural product hippuristanol. We show here that this compound is a selective and potent inhibitor of eIF4A RNA-binding activity that can be used to distinguish between eIF4A-dependent and -independent modes of translation initiation in vitro and in vivo. We also show that poliovirus replication is delayed when infected cells are exposed to hippuristanol. Our study demonstrates the feasibility of selectively targeting members of the DEAD-box helicase family with small-molecule inhibitors.  相似文献   
84.
85.
86.
87.
The basis for O2 sensitivity of C4 photosynthesis was evaluated using a C4-cycle-limited mutant of Amaranthus edulis (a phosphoenolpyruvate carboxylase-deficient mutant), and a C3-cycle-limited transformant of Flaveria bidentis (an antisense ribulose-1,5-bisphosphate carboxylase/oxygenase [Rubisco] small subunit transformant). Data obtained with the C4-cycle-limited mutant showed that atmospheric levels of O2 (20 kPa) caused increased inhibition of photosynthesis as a result of higher levels of photorespiration. The optimal O2 partial pressure for photosynthesis was reduced from approximately 5 kPa O2 to 1 to 2 kPa O2, becoming similar to that of C3 plants. Therefore, the higher O2 requirement for optimal C4 photosynthesis is specifically associated with the C4 function. With the Rubisco-limited F. bidentis, there was less inhibition of photosynthesis by supraoptimal levels of O2 than in the wild type. When CO2 fixation by Rubisco is limited, an increase in the CO2 concentration in bundle-sheath cells via the C4 cycle may further reduce the oxygenase activity of Rubisco and decrease the inhibition of photosynthesis by high partial pressures of O2 while increasing CO2 leakage and overcycling of the C4 pathway. These results indicate that in C4 plants the investment in the C3 and C4 cycles must be balanced for maximum efficiency.  相似文献   
88.
A mutant of Amaranthus edulis (Speg.) lacking activity of the C4 leaf form of NAD-malic enzyme (ME; EC 1.1.1.39) has been isolated. Homozygous mutant (5% wild-type ME activity) and heterozygous (50% wild-type ME activity) F2 plants were shown to contain both the α and β NAD-ME subunits in similar amounts to those detected in the wild-type leaves. The rate of photosynthetic CO2 assimilation was reduced in the homozygous mutant to 5% of that observed for the wild-type leaves. Other C4 enzymes were not down-regulated in the mutant plants. There was little difference in photosynthetic rate of the heterozygous plants compared to the wild-type, suggesting that NAD-ME exerts little control over the rate of C4 photosynthesis, and that in the wild-type the enzyme has a very low control coefficient. The activity loss in the heterozygote may therefore be compensated by regulatory mechanisms that increase the activity of the enzyme in vivo. Data for bundle-sheath strands indicated that although the homozygous mutants were able to oxidise malate via the Krebs cycle, they were unable to convert malate to pyruvate and alanine via NAD-ME. Received: 2 April 1998 / Accepted: 7 May 1998  相似文献   
89.
90.
CIZ1 forms large assemblies at the inactive X chromosome (Xi) in female fibroblasts in an Xist lncRNA-dependent manner and is required for accurate maintenance of polycomb targets genome-wide. Here we address requirements for assembly formation and show that CIZ1 undergoes two direct interactions with Xist, via independent N- and C-terminal domains. Interaction with Xist, assembly at Xi, and complexity of self-assemblies formed in vitro are modulated by two alternatively spliced glutamine-rich prion-like domains (PLD1 and 2). PLD2 is dispensable for accumulation at existing CIZ1–Xi assemblies in wild-type cells but is required in CIZ1-null cells where targeting, assembly, and enrichment for H3K27me3 and H2AK119ub occur de novo. In contrast, PLD1 is required for both de novo assembly and accumulation at preexisting assemblies and, in vitro, drives formation of a stable fibrillar network. Together they impart affinity for RNA and a complex relationship with repeat E of Xist. These data show that alternative splicing of two PLDs modulates CIZ1’s ability to build large RNA–protein assemblies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号