首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5386篇
  免费   472篇
  国内免费   1篇
  2022年   33篇
  2021年   64篇
  2020年   70篇
  2019年   66篇
  2018年   99篇
  2017年   74篇
  2016年   106篇
  2015年   186篇
  2014年   189篇
  2013年   308篇
  2012年   318篇
  2011年   324篇
  2010年   230篇
  2009年   181篇
  2008年   248篇
  2007年   263篇
  2006年   268篇
  2005年   229篇
  2004年   227篇
  2003年   243篇
  2002年   242篇
  2001年   71篇
  2000年   60篇
  1999年   91篇
  1998年   77篇
  1997年   48篇
  1996年   58篇
  1995年   63篇
  1994年   56篇
  1993年   54篇
  1992年   57篇
  1991年   38篇
  1990年   46篇
  1989年   47篇
  1988年   40篇
  1987年   46篇
  1986年   38篇
  1985年   49篇
  1984年   62篇
  1983年   38篇
  1982年   60篇
  1981年   43篇
  1980年   59篇
  1979年   40篇
  1978年   40篇
  1977年   35篇
  1976年   34篇
  1975年   30篇
  1974年   30篇
  1973年   30篇
排序方式: 共有5859条查询结果,搜索用时 609 毫秒
981.
The human gut microbiota ferments dietary non‐digestible carbohydrates into short‐chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health‐promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross‐feeding of intermediary metabolites (in particular lactate, succinate and 1,2‐propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.  相似文献   
982.
Rainforest conversion and expansion of plantations in tropical regions are associated with changes in animal communities and biodiversity decline. In soil, Collembola are one of the most numerous invertebrate groups that affect the functioning of microbial communities and support arthropod predators. Despite that, information on the impact of changes in land use in the tropics on species and trait composition of Collembola communities is very limited. We investigated the response of Collembola to the conversion of rainforest into rubber agroforestry (“jungle rubber”), rubber, and oil palm plantations in Jambi Province (Sumatra, Indonesia), a region which experienced one of the strongest recent deforestation globally. Collembola were sampled in 2013 and 2016 from the litter and soil layer using heat extraction, and environmental factors were measured (litter C/N ratio, pH, water content, composition of microbial community and predator abundance). In the litter layer, density and species richness in plantation systems were 25%–38% and 30%–40% lower, respectively, than in rainforest. However, in the soil layer, density, species richness, and trait diversity of Collembola were only slightly affected by land‐use change, contrasting the response of many other animal groups. Species and trait composition of Collembola communities in litter and soil differed between each of the land‐use systems. Water content and pH were identified as main factors related to the differences in species and trait composition in both litter and soil, followed by the density of micro‐ and macropredators. Dominant species of Collembola in rainforest and jungle rubber were characterized by small body size, absence of furca, and absence of intense pigmentation, while in plantations, larger species with long furca and diffuse or patterned pigmentation were more abundant. Overall, land‐use change negatively affected Collembola communities in the litter layer, but its impact was lower in the soil layer. Several pantropical genera of Collembola (i.e., Isotomiella, Pseudosinella, and Folsomides) dominated across land‐use systems, reflecting their high environmental adaptability and/or efficient dispersal, calling for studies on their ecology and genetic diversity. The decline in species richness and density of litter‐dwelling Collembola with the conversion of rainforest into plantation systems calls for management practices mitigating negative effects of the deterioration of the litter layer in rubber plantations, but even more in oil palm plantations.  相似文献   
983.
Inter‐organ communication is essential for plants to coordinate development and acclimate to mechanical environmental fluctuations. The aim of this study was to investigate long‐distance signaling in trees. We compared on young poplars the short‐term effects of local flame wounding and of local stem bending for two distal responses: (1) stem primary growth and (2) the expression of mechanoresponsive genes in stem apices. We developed a non‐contact measurement method based on the analysis of apex images in order to measure the primary growth of poplars. The results showed a phased stem elongation with alternating nocturnal circumnutation phases and diurnal growth arrest phases in Populus tremula × alba clone INRA 717‐1B4. We applied real‐time polymerase chain reaction (RT‐PCR) amplifications in order to evaluate the PtaZFP2, PtaTCH2, PtaTCH4, PtaACS6 and PtaJAZ5 expressions. The flame wounding inhibited primary growth and triggered remote molecular responses. Flame wounding induced significant changes in stem elongation phases, coupled with inhibition of circumnutation. However, the circadian rhythm of phases remained unaltered and the treated plants were always phased with control plants during the days following the stress. For bent plants, the stimulated region of the stem showed an increased PtaJAZ5 expression, suggesting the jasmonates may be involved in local responses to bending. No significant remote responses to bending were observed.  相似文献   
984.
985.
Spiroplasma endosymbionts are maternally inherited microorganisms which infect many arthropod species. In some Drosophila species, it acts as a reproductive manipulator, spreading in populations by killing the sons of infected mothers. Distinct Drosophila melanogaster populations from Brazil exhibit variable male-killing Spiroplasma prevalences. In this study, we investigated the presence of variability for the male-killing phenotype among Drosophila and/or Spiroplasma strains and verified if it correlates with the endosymbiont prevalence in natural populations. For that, we analyzed the male-killing expression when Spiroplasma strains from different populations were transferred to a standard D. melanogaster line (Canton-S) and when a common Spiroplasma strain was transferred to different wild-caught D. melanogaster lines, both at optimal and challenging temperatures for the bacteria. No variation was observed in the male-killing phenotype induced by different Spiroplasma strains. No phenotypic variability among fly lines was detected at optimal temperature (23 °C), as well. Conversely, significant variation in the male-killing expression was revealed among D. melanogaster lines at 18.5 °C, probably caused by imperfect transmission of the endosymbiont. Distinct lines differed in their average sex ratios as well as in the pattern of male-killing expression as the infected females aged. Greater variation occurred among lines from one locality, although there was no clear correlation between the male-killing intensity and the endosymbiont prevalence in each population. Imperfect transmission or male killing may also occur in the field, thus helping to explain the low or intermediate prevalences reported in nature. We discuss the implications of our results for the dynamics of male-killing Spiroplasma in natural populations.  相似文献   
986.
987.
Differential detergent fractionation (DDF) is frequently used to partition fresh cells and tissues into distinct compartments. We have tested whether DDF can reproducibly extract and fractionate cellular protein components from frozen tissues. Frozen kidneys were sequentially extracted with three different buffer systems. Analysis of the three fractions with liquid chromatography–tandem mass spectrometry (LC–MS/MS) identified 1693 proteins, some of which were common to all fractions and others of which were unique to specific fractions. Normalized spectral index (SIN) values obtained from these data were compared to evaluate both the reproducibility of the method and the efficiency of enrichment. SIN values between replicate fractions demonstrated a high correlation, confirming the reproducibility of the method. Correlation coefficients across the three fractions were significantly lower than those for the replicates, supporting the capability of DDF to differentially fractionate proteins into separate compartments. Subcellular annotation of the proteins identified in each fraction demonstrated a significant enrichment of cytoplasmic, cell membrane, and nuclear proteins in the three respective buffer system fractions. We conclude that DDF can be applied to frozen tissue to generate reproducible proteome coverage discriminating subcellular compartments. This demonstrates the feasibility of analyzing cellular compartment-specific proteins in archived tissue samples with the simple DDF method.  相似文献   
988.
Li J  Ban J  Santiago LS 《Biometrics》2011,67(4):1481-1488
Testing homogeneity of species assemblages has important applications in ecology. Due to the unique structure of abundance data often collected in ecological studies, most classical statistical tests cannot be applied directly. In this article, we propose two novel nonparametric tests for comparing species assemblages based on the concept of data depth. They can be considered as a natural generalization of the Kolmogorov-Smirnov and the Cramér-von Mises tests (KS and CM) in this species assemblage comparison context. Our simulation studies show that the proposed test is more powerful than other existing methods under various settings. A real example is used to demonstrate how the proposed method is applied to compare species assemblages using plant community data from a highly diverse tropical forest at Barro Colorado Island, Panama.  相似文献   
989.
Plough LV  Hedgecock D 《Genetics》2011,189(4):1473-1486
Inbreeding depression and genetic load have been widely observed, but their genetic basis and effects on fitness during the life cycle remain poorly understood, especially for marine animals with high fecundity and high, early mortality (type-III survivorship). A high load of recessive mutations was previously inferred for the Pacific oyster Crassostrea gigas, from massive distortions of zygotic, marker segregation ratios in F(2) families. However, the number, genomic location, and stage-specific onset of mutations affecting viability have not been thoroughly investigated. Here, we again report massive distortions of microsatellite-marker segregation ratios in two F(2) hybrid families, but we now locate the causative deleterious mutations, using a quantitative trait locus (QTL) interval-mapping model, and we characterize their mode of gene action. We find 14-15 viability QTL (vQTL) in the two families. Genotypic frequencies at vQTL generally suggest selection against recessive or partially recessive alleles, supporting the dominance theory of inbreeding depression. No epistasis was detected among vQTL, so unlinked vQTL presumably have independent effects on survival. For the first time, we track segregation ratios of vQTL-linked markers through the life cycle, to determine their stage-specific expression. Almost all vQTL are absent in the earliest life stages examined, confirming zygotic viability selection; vQTL are predominantly expressed before the juvenile stage (90%), mostly at metamorphosis (50%). We estimate that, altogether, selection on vQTL caused 96% mortality in these families, accounting for nearly all of the actual mortality. Thus, genetic load causes substantial mortality in inbred Pacific oysters, particularly during metamorphosis, a critical developmental transition warranting further investigation.  相似文献   
990.
Photorhabdus temperata, an insect pathogen and nematode symbiont, is motile in liquid medium by swimming. We found that P.?temperata was capable of surface movement, termed swarming behavior. Several lines of evidence indicate that P. temperata use the same flagella for both swimming and swarming motility. Both motility types required additional NaCl or KCl in the medium and had peritrichous flagella, which were composed of the same flagellin as detected by immunoblotting experiments. Mutants defective in flagellar structural proteins were nonmotile for both motility types. Unlike swimming, we observed swarming behavior to be a social form of movement in which the cells coordinately formed intricate channels covering a surface. The constituents of the swarm media affected motility. Swarming was optimal on low agar concentrations; as agar concentrations increased, swarm ring diameters decreased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号