首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12019篇
  免费   1046篇
  国内免费   7篇
  2022年   138篇
  2021年   227篇
  2020年   154篇
  2019年   161篇
  2018年   258篇
  2017年   198篇
  2016年   322篇
  2015年   546篇
  2014年   595篇
  2013年   772篇
  2012年   900篇
  2011年   844篇
  2010年   546篇
  2009年   426篇
  2008年   646篇
  2007年   647篇
  2006年   581篇
  2005年   537篇
  2004年   528篇
  2003年   453篇
  2002年   457篇
  2001年   278篇
  2000年   202篇
  1999年   203篇
  1998年   125篇
  1997年   83篇
  1996年   101篇
  1995年   93篇
  1994年   86篇
  1993年   77篇
  1992年   112篇
  1991年   74篇
  1990年   85篇
  1989年   81篇
  1988年   70篇
  1987年   81篇
  1986年   62篇
  1985年   73篇
  1984年   81篇
  1983年   55篇
  1982年   75篇
  1981年   62篇
  1980年   75篇
  1979年   61篇
  1978年   60篇
  1977年   57篇
  1976年   54篇
  1975年   42篇
  1974年   47篇
  1973年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The impact of apolipoprotein C-I (apoC-I) deficiency on hepatic lipid metabolism was addressed in mice in the presence or the absence of cholesteryl ester transfer protein (CETP). In addition to the expected moderate reduction in plasma cholesterol levels, apoCIKO mice showed significant increases in the hepatic content of cholesteryl esters (+58%) and triglycerides (+118%) and in biliary cholesterol concentration (+35%) as compared with wild-type mice. In the presence of CETP, hepatic alterations resulting from apoC-I deficiency were enforced, with up to 58% and 302% increases in hepatic levels of cholesteryl esters and triglycerides in CETPTg/apoCIKO mice versus CETPTg mice, respectively. Biliary levels of cholesterol, phospholipids, and bile acids were increased by 88, 77, and 20%, respectively, whereas total cholesterol, HDL cholesterol, and triglyceride concentrations in plasma were further reduced in CETPTg/apoCIKO mice versus CETPTg mice. Finally, apoC-I deficiency was not associated with altered VLDL production rate. In line with the previously recognized inhibition of lipoprotein clearance by apoC-I, apoC-I deficiency led to decreased plasma lipid concentration, hepatic lipid accumulation, and increased biliary excretion of cholesterol. The effect was even greater when the alternate reverse cholesterol transport pathway via VLDL/LDL was boosted in the presence of CETP.  相似文献   
993.
We report structural features and distribution patterns of 26 different group I introns located at three distinct nucleotide positions in nuclear small subunit ribosomal DNA (SSU-rDNA) of 10 Septoria and 4 other anamorphic species related to the teleomorphic genus Mycosphaerella. Secondary structure and sequence characteristics assigned the introns to the common IC1 and IE groups. Intron distribution patterns and phylogenetic relationships strongly suggested that some horizontal transfer events have occurred among the closely related fungal species sampled. To test this hypothesis, we used a comparative approach of intron- and rDNA-based phylogenies through MP- and ML-based topology tests. Our results showed two statistically well-supported major incongruences between the intron and the equivalent internal transcribed spacer (ITS) tree comparisons made. Such absence of a co-evolutive history between group I introns and host sequences is discussed relatively to the intron structures, the mechanisms of intron movement, and the biology of the Mycosphaerella pathogenic fungi. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Reviewing Editor: Debashish Bhattacharya  相似文献   
994.
995.
Excitotoxicity mediated via the ( S )-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of receptor for l -glutamate contributes to various neuropathologies involving acute brain injury and chronic degenerative disorders. In this study, AMPA-induced neuronal injury and staurosporine (STS)-mediated apoptosis were compared in primary neuronal cultures of murine cerebral cortex by analyzing indices up- and downstream of mitochondrial activation. AMPA-mediated apoptosis involved induction of Bax, loss of mitochondrial transmembrane potential (ΔΨm), early release of cytochrome c (cyt c ), and more delayed release of second mitochondrial activator of caspases (SMAC), Omi, and apoptosis-inducing factor (AIF) with early calpain and minor late activation of caspase 3. STS-induced apoptosis was characterized by a number of differences, a more rapid time course, non-involvement of ΔΨm, and relatively early recruitment of SMAC and caspase 3. The AMPA-induced rise in intracellular calcium appeared insufficient to evoke ΔΨm as release of cyt c preceded mitochondrial depolarization, which was followed by the cytosolic translocation of SMAC, Omi, and AIF. Bax translocation preceded cyt c release for both stimuli inferring its involvement in apoptotic induction. Inclusion of the broad spectrum caspase inhibitor zVAD-fmk reduced the AMPA-induced release of cyt c , SMAC, and AIF, while only affecting the redistribution of Omi and AIF in the STS-treated neurons. Only AIF release was affected by a calpain inhibitor (calpastatin) which exerted relatively minor effects on the progression of cellular injury. AMPA-mediated release of apoptogenic proteins was more hierarchical relative to STS with its calpain activation and caspase-dependent AIF redistribution arguing for a model with cross-talk between caspase-dependent/independent apoptosis.  相似文献   
996.
Human herpesviruses (HHV) are stealth pathogens possessing several decoy or immune system evasion mechanisms favoring their persistence within the infected host. Of these viruses, HHV-6 is among the most successful human parasites, establishing lifelong infections in nearly 100% of individuals around the world. To better understand this host-pathogen relationship, we determined whether HHV-6 could interfere with the development of the innate antiviral response by affecting interferon (IFN) biosynthesis. Using inducible cell lines and transient transfection assays, we have identified the immediate-early 1 (IE1) protein as a potent inhibitor of IFN-beta gene expression. IE1 proteins from both HHV-6 variants were capable of suppressing IFN-beta gene induction. IE1 prevents IFN-beta gene expression triggered by Sendai virus infection, double-stranded RNA (dsRNA) and dsDNA transfection, or the ectopic expression of IFN-beta gene activators such as retinoic inducible gene I protein, mitochondrial antiviral signaling protein, TBK-1, IkappaB kinase epsilon (IKKepsilon), and IFN regulatory factor 3 (IRF3). While the stability of IFN-beta mRNA is not affected, IE1-expressing cells have reduced levels of dimerized IRF3 and nucleus-translocated IRF3 in response to activation by TBK-1 or IKKepsilon. Using nuclear extracts and gel shift experiments, we could demonstrate that in the presence of IE1, IRF3 does not bind efficiently to the IFN-beta promoter sequence. Overall, these results indicate that the IE1 protein of HHV-6, one of the first viral proteins synthesized upon viral entry, is a potent suppressor of IFN-beta gene induction and likely contributes to favor the establishment of and successful infection of cells with this virus.  相似文献   
997.
Benzyloxycarbonyl (Z)-Ala-Pro-Phe-glyoxal and Z-Ala-Ala-Phe-glyoxal have both been shown to be inhibitors of alpha-chymotrypsin with minimal Ki values of 19 and 344 nM, respectively, at neutral pH. These Ki values increased at low and high pH with pKa values of approximately 4.0 and approximately 10.5, respectively. By using surface plasmon resonance, we show that the apparent association rate constant for Z-Ala-Pro-Phe-glyoxal is much lower than the value expected for a diffusion-controlled reaction. 13C NMR has been used to show that at low pH the glyoxal keto carbon is sp3-hybridized with a chemical shift of approximately 100.7 ppm and that the aldehyde carbon is hydrated with a chemical shift of approximately 91.6 ppm. The signal at approximately 100.7 ppm is assigned to the hemiketal formed between the hydroxy group of serine 195 and the keto carbon of the glyoxal. In a slow exchange process controlled by a pKa of approximately 4.5, the aldehyde carbon dehydrates to give a signal at approximately 205.5 ppm and the hemiketal forms an oxyanion at approximately 107.0 ppm. At higher pH, the re-hydration of the glyoxal aldehyde carbon leads to the signal at 107 ppm being replaced by a signal at 104 ppm (pKa approximately 9.2). On binding either Z-Ala-Pro-Phe-glyoxal or Z-Ala-Ala-Phe-glyoxal to alpha-chymotrypsin at 4 and 25 degrees C, 1H NMR is used to show that the binding of these glyoxal inhibitors raises the pKa value of the imidazolium ion of histidine 57 to a value of >11 at both 4 and 25 degrees C. We discuss the mechanistic significance of these results, and we propose that it is ligand binding that raises the pKa value of the imidazolium ring of histidine 57 allowing it to enhance the nucleophilicity of the hydroxy group of the active site serine 195 and lower the pKa value of the oxyanion forming a zwitterionic tetrahedral intermediate during catalysis.  相似文献   
998.
Aggrecanases have been characterized as proteinases that cleave the Glu373-Ala374 bond of the aggrecan core protein, and they are multidomain metalloproteinases belonging to the ADAMTS (adamalysin with thrombospondin type 1 motifs) family. The first aggrecanases discovered were ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). They contain a zinc catalytic domain followed by non-catalytic ancillary domains, including a disintegrin domain, a thrombospondin domain, a cysteine-rich domain, and a spacer domain. In the case of ADAMTS-5, a second thrombospondin domain follows the spacer domain. We previously reported that the non-catalytic domains of ADAMTS-4 influence both its extracellular matrix interaction and proteolytic abilities. Here we report the effects of these domains of ADAMTS-5 on the extracellular matrix interaction and proteolytic activities and compare them with those of ADAMTS-4. Although the spacer domain was critical for ADAMTS-4 localization in the matrix, the cysteine-rich domain influenced ADAMTS-5 localization. Similar to previous reports of other ADAMTS family members, very little proteolytic activity was detected with the ADAMTS-5 catalytic domain alone. The sequential inclusion of each carboxyl-terminal domain enhanced its activity against aggrecan, carboxymethylated transferrin, fibromodulin, decorin, biglycan, and fibronectin. Both ADAMTS-4 and -5 had a broad optimal activity at pH 7.0-9.5. Aggrecanolytic activities were sensitive to the NaCl concentration, but activities on non-aggrecan substrates, e.g. carboxymethylated transferrin, were not affected. Although ADAMTS-4 and ADAMTS-5 had similar general proteolytic activities, the aggrecanase activity of ADAMTS-5 was at least 1,000-fold greater than that of ADAMTS-4 under physiological conditions. Our studies suggest that ADAMTS-5 is a major aggrecanase in cartilage metabolism and pathology.  相似文献   
999.
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that promotes cell migration, survival, and gene expression. Here we show that FAK signaling is important for tumor necrosis factor-alpha (TNFalpha)-induced interleukin 6 (IL-6) mRNA and protein expression in breast (4T1), lung (A549), prostate (PC-3), and neural (NB-8) tumor cells by FAK short hairpin RNA knockdown and by comparisons of FAK-null (FAK(-/-)) and FAK(+/+) mouse embryo fibroblasts. FAK promoted TNFalpha-stimulated MAPK activation needed for maximal IL-6 production. FAK was not required for TNFalpha-mediated nuclear factor-kappaB or c-Jun N-terminal kinase activation. TNFalpha-stimulated FAK catalytic activation and IL-6 production were inhibited by FAK N-terminal but not FAK C-terminal domain overexpression. Analysis of FAK(-/-) fibroblasts stably reconstituted with wild type or various FAK point mutants showed that FAK catalytic activity, Tyr-397 phosphorylation, and the Pro-712/713 proline-rich region of FAK were required for TNFalpha-stimulated MAPK activation and IL-6 production. Constitutively activated MAPK kinase-1 (MEK1) expression in FAK(-/-) and A549 FAK short hairpin RNA-expressing cells rescued TNFalpha-stimulated IL-6 production. Inhibition of Src protein-tyrosine kinase activity or mutation of Src phosphorylation sites on FAK (Tyr-861 or Tyr-925) did not affect TNFalpha-stimulated IL-6 expression. Moreover, analyses of Src(-/-), Yes(-/-), and Fyn(-/-) fibroblasts showed that Src expression was inhibitory to TNFalpha-stimulated IL-6 production. These studies provide evidence for a novel Src-independent FAK to MAPK signaling pathway regulating IL-6 expression with potential importance to inflammation and tumor progression.  相似文献   
1000.
Thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) are closely related zinc-dependent metallopeptidases that metabolize small bioactive peptides. They cleave many substrates at the same sites, but they recognize different positions on others, including neurotensin, a 13-residue peptide involved in modulation of dopaminergic circuits, pain perception, and thermoregulation. On the basis of crystal structures and previous mapping studies, four sites (Glu-469/Arg-470, Met-490/Arg-491, His-495/Asn-496, and Arg-498/Thr-499; thimet oligopeptidase residues listed first) in their substrate-binding channels appear positioned to account for differences in specificity. Thimet oligopeptidase mutated so that neurolysin residues are at all four positions cleaves neurotensin at the neurolysin site, and the reverse mutations in neurolysin switch hydrolysis to the thimet oligopeptidase site. Using a series of constructs mutated at just three of the sites, it was determined that mutations at only two (Glu-469/Arg-470 and Arg-498/Thr-499) are required to swap specificity, a result that was confirmed by testing the two-mutant constructs. If only either one of the two sites is mutated in thimet oligopeptidase, then the enzyme cleaves almost equally at the two hydrolysis positions. Crystal structures of both two-mutant constructs show that the mutations do not perturb local structure, but side chain conformations at the Arg-498/Thr-499 position differ from those of the mimicked enzyme. A model for differential recognition of neurotensin based on differences in surface charge distribution in the substrate binding sites is proposed. The model is supported by the finding that reducing the positive charge on the peptide results in cleavage at both hydrolysis sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号