首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   77篇
  2020年   8篇
  2019年   12篇
  2016年   18篇
  2015年   33篇
  2014年   27篇
  2013年   54篇
  2012年   79篇
  2011年   60篇
  2010年   40篇
  2009年   42篇
  2008年   48篇
  2007年   61篇
  2006年   57篇
  2005年   58篇
  2004年   61篇
  2003年   59篇
  2002年   53篇
  2001年   16篇
  2000年   9篇
  1999年   22篇
  1998年   24篇
  1997年   17篇
  1996年   16篇
  1995年   28篇
  1994年   17篇
  1993年   19篇
  1992年   11篇
  1991年   12篇
  1989年   13篇
  1988年   10篇
  1985年   9篇
  1983年   10篇
  1981年   11篇
  1980年   9篇
  1975年   8篇
  1973年   10篇
  1972年   9篇
  1970年   7篇
  1968年   8篇
  1967年   7篇
  1966年   11篇
  1965年   10篇
  1963年   7篇
  1962年   11篇
  1959年   8篇
  1958年   9篇
  1956年   9篇
  1952年   8篇
  1939年   9篇
  1937年   8篇
排序方式: 共有1345条查询结果,搜索用时 31 毫秒
11.
A novel Arabidopsis thaliana (L.) Heynh. developmental mutant,waldmeister (wam), is described. This mutant was found in theprogeny arising from an Ac-Ds tagging experiment, but does notappear to be tagged by an introduced transposon. This recessivenuclear mutation maps between GAPB and ap1 on chromosome 1 andshows extreme morphological and physiological changes in bothfloral and vegetative tissues. Changes to the vegetative phenotypeinclude altered leaf morphology, multiple rosettes, stem fasciation,retarded senescence and disturbed geotropic growth. Changesto the floral phenotype include delayed flowering, increasednumber of inflorescences, determinate inflorescences, alterednumber and morphology of floral organs, chimeric floral organs,and ectopic ovules . wam was crossed to a number of previouslydescribed floral mutants: apetela 2, apetela 3, pistillata,agamous, and leafy. The phenotype of the double mutant was ineach case additive. In the case of agamous, however, the indeterminaterepetitive floral structure of agamous was lacking, emphasizingthe determinate inflorescence growth of wam. The extreme phenotypeof the wam mutant is suggestive of a disturbance to a gene ofglobal importance in the regulation of plant growth and development. Key words: Arabidopsis thaliana, waldmeister, developmental mutant, flower mutant  相似文献   
12.
Feldberger Haussee provides a classic example of eutrophication history of hardwater lakes in the Baltic Lake District (Germany) and of changes in their algal flora during the 20th century. The lake originally was regarded as slightly eutrophic. A process of drastic eutrophication from the 1950s until the end of the 1970s caused mass developments of blue-green and green algae. A restoration program was started in the 1980s to improve the water quality of the lake using both diversion of sewage outside the catchment area, and biomanipulation by altering the fish community. This restoration program led to positive changes in the lake ecosystem. Direct effects of biomanipulation resulted in an increase of herbivorous zooplankton, a decrease of phytoplankton biomass, and an increase of water transparency. The recovery of Feldberger Haussee also may have been indirectly enhanced by an increase in nutrient sedimentation as a consequence of intensified calcite precipitation, decrease in phosphorus remobilization due to a pH-decrease, increased NIP-ratio, and recolonization of the littoral zone by macrophytes. This paper concentrates on the long term development of the phytoplankton community as a response to changes in the food web structure as well as to alterations in the chemical environment of the algae. Both are reflected in four major stages passed by the algal assemblage between 1980 and 1994: (1) From 1980-summer 1985 dense green algal populations were found indicating similar conditions as in the 1970s during the period of maximum eutrophication. (2) A diverse phytoplankton community during summer 1985–1989 showed the first effects of a recovery. (3) From 1990–1992 the phytoplankton was characterized by ungrazeable filamentous blue-green algae first of all as a response to increased herbivory of zooplankton on edible species and to increasing N/P-ratios. (4) Finally, the algal species diversity increased in 1993 and 1994 whereas the phytoplankton biomass decreased showing the success of the combined restoration measures.  相似文献   
13.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   
14.
The genetic organization of the DNA region encoding the phenol degradation pathway ofPseudomonas putida H has been investigated. This strain can utilize phenol or some of its methylated derivatives as its sole source of carbon and energy. The first step in this process is the conversion of phenol into catechol. Catechol is then further metabolized via themeta-cleavage pathway into TCA cycle intermediates. Genes encoding these enzymes are clustered on the plasmid pPGH1. A region of contiguous DNA spanning about 16 kb contains all of the genetic information necessary for inducible phenol degradation. The analysis of mutants generated by insertion of transposons and cassettes indicates that all of the catabolic genes are contained in a single operon. This codes for a multicomponent phenol hydroxylase andmeta-cleavage pathway enzymes. Catabolic genes are subject to positive control by the gene product(s) of a second locus.  相似文献   
15.
The subcellular distribution of hexoses, sucrose and amino acids among the stromal, cytosolic and vacuolar compartments was analysed by a nonaqueous fractionation technique in leaves of tobacco (Nicotiana tabaccum L.) wild-type and transgenic plants expressing a yeast-derived invertase in the cytosolic, vacuolar or apoplasmic compartment. In the wild-type plants the amino acids were found to be located in the stroma and in the cytosol, sucrose mainly in the cytosol and up to 98% of the hexoses in the vacuole. In the leaves of the various transformants, where the contents of hexoses were greater than in wild-type plants, again 97–98% of these hexoses were found in the vacuoles. It is concluded that leaf vacuoles contain transporters for the active uptake of glucose and fructose against a high concentration gradient. A comparison of estimated metabolite concentrations in the subcellular compartments of wild-type and transformant plants indicated that the decreased photosynthetic capacity of the transformants is not due to an osmotic effect on photosynthesis, as was shown earlier to be the case in transformed potato leaves, but is the result of a long-term dedifferentiation of tobacco leaf cells to heterotrophic cells.Abbreviations apo-inv tobacco plant with yeast invertase in the apoplasm - Chl chlorophyll - cy-inv tobacco plant with yeast invertase in the cytosol - vac-inv tobacco plant with yeast invertase in the vacuole - WT wild-type tobacco plant The authors thank A. Großpietsch for her able technical assistance. This work has been supported by the Bundesminister für Forschung und Technologie.  相似文献   
16.
The potato species Solanum andigena (Juz. and Buk.) and Solanum demissum (Lindl.) that both require short days for tuberisation were kept in either long days (16 h light), or short days (8 h light) with a 30-min night break mid-way through the dark period. Tuberisation of these species was inhibited under both conditions. Repeated spraying of these plants with up to 100 μM jasmonic acid did not induce them to tuberise even though jasmonic acid was shown to be taken up and transported within the plant. This result argues against jasmonic acid itself being the transported tuber-inducing signal, although it does not exclude a role for jasmonic acid later in tuber formation and development once induction has taken place.  相似文献   
17.
Sulfur plays an important role in plants, being used for the biosynthesis of amino acids, sulfolipids and secondary metabolites. After uptake sulfate is activated and subsequently reduced to sulfide or serves as donor for sulfurylation reactions. The first step in the activation of sulfate in all cases studied so far is catalyzed by the enzyme ATP-sulfurylase (E.C. 2.7.7.4.) which catalyzes the formation of adenosine-5′-phosphosulfate (APS). Two cDNA clones from potato encoding ATP-sulfurylases were identified following transformation of a Saccharomyces cerevisiae mutant deficient in ATP-sulfurylase activity with a cDNA library from potato source leaf poly(A)+ RNA cloned in a yeast expression vector. Several transformants were able to grow on a medium with sulfate as the only sulfur source, this ability being strictly linked to the presence of two classes of cDNAs. The clones StMet3-1 and StMet3-2 were further analyzed. DNA analysis revealed an open reading frame encoding a protein with a molecular mass of 48 kDa in the case of StMet3-1 and 52 kDa for StMet3-2. The deduced polypeptides are 88% identical at the amino acid level. The clone StMet3-2 has a 48 amino acid N-terminal extension which shows common features of a chloroplast transit peptide. Sequence comparison of the ATP-sulfurylase Met3 from Saccharomyces cerevisiae with the cDNA StMet3-1 (StMet3-2) reveals 31% (30%) identity at the amino acid level. Protein extracts from the yeast mutant transformed with the clone StMet3-1 displayed ATP-sulfurylase activity. RNA blot analysis demonstrated the expression of both genes in potato leaves, root and stem, but not in tubers. To the best of the authors' knowledge this is the first cloning and identification of genes involved in the reductive sulfate assimilation pathway from higher plants.  相似文献   
18.
Summary Cytogenetic examination of transgenic Arabidopsis thaliana (L.) Heynh. plants obtained by Agrobacterium-mediated gene transfer to cotyledon- and root-explants or by direct gene transfer into protoplasts revealed a high percentage of tetraploid or aneuploid transformants. Depending on the transformation procedure used, 13% (root explant transformation), 33% (cotyledon explant transformation), or 38% (direct gene transfer) of the transformants showed aberrant ploidy levels. A good correlation between the ploidy level of a plant and the size of its pollen grains was observed. This allows quick and simple testing of the ploidy level of transgenic Arabidopsis plants.Abbreviations AM Arabidopsis medium - ANOVA analysis of variance - DAPI 4,6-Diamidino-2-phenylindole - PEG polyethyleneglycol  相似文献   
19.
In Feldberg Haussee, an anthropogenic eutrophicated lake, biomanipulation was executed for restoration. To increase the biomass of crustaceans, fish grazing on zooplankton was reduced by catching small fishes and introducing pike-perch. After biomanipulation rotifer biomass from a wide range of species decreased to a small spring maximum with three dominant species. The development of food in spring and food competition between crustaceans probably controlled the rotifer development.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号