首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   7篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   11篇
  2012年   7篇
  2011年   9篇
  2010年   7篇
  2009年   3篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   9篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
41.

Background

Digital polymerase chain reaction (dPCR) is an increasingly popular technology for detecting and quantifying target nucleic acids. Its advertised strength is high precision absolute quantification without needing reference curves. The standard data analytic approach follows a seemingly straightforward theoretical framework but ignores sources of variation in the data generating process. These stem from both technical and biological factors, where we distinguish features that are 1) hard-wired in the equipment, 2) user-dependent and 3) provided by manufacturers but may be adapted by the user. The impact of the corresponding variance components on the accuracy and precision of target concentration estimators presented in the literature is studied through simulation.

Results

We reveal how system-specific technical factors influence accuracy as well as precision of concentration estimates. We find that a well-chosen sample dilution level and modifiable settings such as the fluorescence cut-off for target copy detection have a substantial impact on reliability and can be adapted to the sample analysed in ways that matter. User-dependent technical variation, including pipette inaccuracy and specific sources of sample heterogeneity, leads to a steep increase in uncertainty of estimated concentrations. Users can discover this through replicate experiments and derived variance estimation. Finally, the detection performance can be improved by optimizing the fluorescence intensity cut point as suboptimal thresholds reduce the accuracy of concentration estimates considerably.

Conclusions

Like any other technology, dPCR is subject to variation induced by natural perturbations, systematic settings as well as user-dependent protocols. Corresponding uncertainty may be controlled with an adapted experimental design. Our findings point to modifiable key sources of uncertainty that form an important starting point for the development of guidelines on dPCR design and data analysis with correct precision bounds. Besides clever choices of sample dilution levels, experiment-specific tuning of machine settings can greatly improve results. Well-chosen data-driven fluorescence intensity thresholds in particular result in major improvements in target presence detection. We call on manufacturers to provide sufficiently detailed output data that allows users to maximize the potential of the method in their setting and obtain high precision and accuracy for their experiments.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-283) contains supplementary material, which is available to authorized users.  相似文献   
42.
43.
Anolis carolinensis is an emerging model species and the sole member of its genus native to the United States. Considerable morphological and physiological variation has been described in the species, and the recent sequencing of its genome makes it an attractive system for studies of genome variation. To inform future studies of molecular and phenotypic variation within A. carolinensis, a rigorous account of intraspecific population structure and relatedness is needed. Here, we present the most extensive phylogeographic study of this species to date. Phylogenetic analyses of mitochondrial DNA sequence data support the previous hypothesis of a western Cuban origin of the species. We found five well‐supported, geographically distinct mitochondrial haplotype clades throughout the southeastern United States. Most Florida populations fall into one of three divergent clades, whereas the vast majority of populations outside Florida belong to a single, shallowly diverged clade. Genetic boundaries do not correspond to major rivers, but may reflect effects of Pleistocene glaciation events and the Appalachian Mountains on migration and expansion of the species. Phylogeographic signal should be examined using nuclear loci to complement these findings.  相似文献   
44.
45.
A mouse genomic clone containing a lactate dehydrogenase-A (LDH-A) processed pseudogene and a B1 repetitive element was isolated, and a nucleotide sequence of approximately 3 kb was determined. The pseudogene and B1 element are flanked by perfect 13-bp repeats, and the B1 sequence starts at 14 nucleotides 3' to the presumptive polyadenylation signal of the pseudogene. The nucleotide sequences of the LDH-A genes and processed pseudogenes from mouse, rat, and human were compared, and a phylogenetic tree was constructed. The rate and pattern of nucleotide substitutions in the LDH-A pseudogenes are similar to previously reported results (Li et al. 1984). The average rate of nucleotide substitutions in the LDH-A pseudogenes is 4.3 X 10(- 9)/site/year. The substitutions of C----T and G----A are most frequent, and A----G substitutions are relatively high. The rate of synonymous substitutions in the LDH-A genes is 5.3 X 10(-9), which is not significantly higher than the average rate of 4.7 X 10(-9) for 35 mammalian genes. The rate of nonsynonymous substitutions in the LDH-A genes is 0.20 X 10(-9), which is considerably lower than the average rate of 0.88 X 10(-9) for 35 mammalian genes. Thus, the mammalian LDH-A gene appears to be highly conserved in evolution.   相似文献   
46.
Terborgh  J.  Losos  E.  Riley  M. P.  Riley  M. Bolaños 《Plant Ecology》1993,107(1):375-386
We studied the pre-germination loss of seeds to invertebrate and vertebrate seed predators of 5 species of Amazonian trees (Astrocaryum macrocalyx—Palmae; Bertholletia excelsa—Lecithydaceae; Calatola venezuelana—Icacinaceae; Dipteryx micrantha—Leguminosae (Papilionoidae); Hymenaea courbaril-Leguminosae (Caesalpinoidae)). These five species were selected from a large tree flora on several criteria. All possess large (3–10 cm) well-protected seeds that might plausibly be attractive to mammalian seed predators. The reproductive biology of three of the species, or close congeners, had been studied elsewhere in the Neotropics (Astrocaryum, Dipteryx, Hymenaea); one is important to the economy of southeastern Peru (Bertholletia); and one, despite large and apparently edible seeds, appeared to suffer no pre-germination loss to predators (Calatola). We conducted the research in mature forests in the Manu National Park of southeastern Peru where mammal densities are unperturbed by human activities. Densities of adult trees of the five species in our area range from very high (>30 per ha: Astrocaryum) to very low (1 per ha: Hymenaea).Loss of seeds to all causes, and to mammalian seed predators in particular, was determined for seeds placed in 2-square meter mammal exclosures and in open controls located at 10 m (near) and 50 m (far) from a large mature individual of the target species (with minor variations in the design for Astrocaryum and Calatola). The exclosures were of two types: impermeable—designed to exclude all mammals, but not invertebrate seed predators, and semipermeable—designed to admit small (<500 g), but not large mammals. Experimental and control plots were stocked with apparently viable seeds during the dry-wet transition period (October–November) and scored one year later.A significant distance effect (higher predation near vs far from a large conspecific adult) was found in only one of the species (Astrocaryum), the only one to be attacked with high frequency by invertebrate seed predators. The absence of any detectable distance effect attributable to mammals suggests that mammals, over the course of a year, thoroughly search the forest floor for seeds. Invertebrates may thus be responsible for most pre-germination distance (density) effects. With respect to the treatments, we found three qualitatively distinct results: seeds of three species (Astrocaryum, Bertholletia, Dipteryx) were significantly protected by the impermeable, but not semipermeable exclosures, implicating small mammals in seed loss; the seeds of one species (Hymenaea) were significantly protected by exclosures of both types, implicating large mammals; and the seeds of one species (Calatola) exhibited 100% survival, whether or not protected by exclosures.The importance of large mammals as seed predators is generally underestimated in these experiments because semipermeable exclosures may serve as foraging reserves for small mammals. Finally, we noted no relationship between the intensity of mammalian seed predation (as suggested by the survival of unprotected seeds) and the abundance of adults of the five species in the environment. The diversity of results obtained for the five species reveals that large-seeded tropical trees may display a wide range of demographic patterns, and points to the likely importance of post-germination bottlenecks in the population biology of many species, even those that may experience severe pre-germination seed loss.  相似文献   
47.
The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.  相似文献   
48.
Snetselaar, K. M., Bolker, M., and Kahmann, R. 1996. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genetics and Biology 20, 299-312. When small drops of Ustilago maydis sporidia were placed 100-200 μm apart on agar surfaces and covered with paraffin oil, sporidia from one drop formed thin hyphae that grew in a zig-zag fashion toward the other drop if it contained sporidia making the appropriate pheromone. For example, a2b2 mating hyphae grew toward a1b1 and a1b2 mating hyphae, and the filaments eventually fused tip to tip. Time-lapse photography indicated that the mating hyphae can rapidly change orientation in response to nearby compatible sporidia. When exposed to pheromone produced by cells in an adjacent drop, haploid sporidia with the a2 allele began elongating before sporidia with the a1 allele. Sporidia without functional pheromone genes responded to pheromone although they did not induce a response, and sporidia without pheromone receptors induced formation of mating hyphae although they did not form mating hyphae. Diploid sporidia heterozygous at b but not at a formed straight, rigid, aerial filaments when exposed to pheromone produced by the appropriate haploid sporidia. Again, the a2a2b1b2 strain formed filaments more quickly than the a1a1b1b2 strain. Taken together, these results suggest that the a2 pheromone diffuses less readily or is degraded more quickly than the a1 pheromone.  相似文献   
49.
50.
Twenty-seven islands in the Lesser Antilles contain either one or two species of Anolis lizards. On nine of the ten two-species islands, the species differ substantially in size; 16 of the 17 one-species islands harbor an intermediate-sized species. Two processes could produce such a pattern: size adjustment (or character displacement), in which similar-sized species evolve in different directions in sympatry; and size assortment, in which only different-sized species can successfully colonize the same island together. Previous analyses implicitly have assumed that size is evolutionarily plastic and determined solely by recent ecological conditions, and consequently have tested the hypothesis that character displacement has occurred on each of the ten two-species islands. Other studies have focused only on size assortment. By analyzing such patterns in a phylogenetic context, I explicitly consider historical effects and can distinguish between size adjustment and size assortment. Using a minimum evolution algorithm, I assess evidence for size adjustment by partitioning changes in size along branches of the phylogenetic tree. Size evolution appears rare (a minimum of 4-7 instances of substantial size evolution). In the northern (but not the southern) Lesser Antilles, size change was significantly greater when a descendant taxon occurred on a two-species island and its hypothetical ancestor occurred on a one-species island, thus supporting the size adjustment hypothesis, though size adjustment might have occurred only once. The relative rarity of size evolution suggests that size assortment might be responsible for nonrandom patterns. In both the northern and southern Lesser Antilles, a null model of no size assortment is convincingly rejected. Closely related taxa, however, are usually similar in size, and hybridization between species has been reported. Consequently, similar-sized species might not coexist because they interbreed and coalesce into one gene pool. A null model that only allows species from different “clades” to co-occur is rejected for the northern Lesser Antilles, but is ambiguous with regard to the southern Lesser Antilles. Thus, competitive exclusion is probably responsible for the pattern of size assortment in the northern Lesser Antilles; both competitive exclusion and interbreeding of closely related species of similar size might be responsible for the patterns evident in the southern Lesser Antilles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号