首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1327篇
  免费   128篇
  1455篇
  2022年   14篇
  2021年   14篇
  2020年   14篇
  2019年   11篇
  2018年   11篇
  2017年   12篇
  2016年   27篇
  2015年   52篇
  2014年   64篇
  2013年   62篇
  2012年   74篇
  2011年   80篇
  2010年   41篇
  2009年   60篇
  2008年   89篇
  2007年   65篇
  2006年   73篇
  2005年   77篇
  2004年   75篇
  2003年   81篇
  2002年   80篇
  2001年   26篇
  2000年   27篇
  1999年   16篇
  1998年   21篇
  1997年   15篇
  1996年   15篇
  1995年   15篇
  1994年   11篇
  1993年   14篇
  1992年   18篇
  1991年   16篇
  1990年   15篇
  1989年   15篇
  1988年   10篇
  1987年   5篇
  1986年   10篇
  1985年   5篇
  1984年   12篇
  1983年   6篇
  1982年   12篇
  1981年   10篇
  1980年   5篇
  1979年   10篇
  1978年   8篇
  1977年   4篇
  1976年   6篇
  1975年   9篇
  1974年   8篇
  1973年   10篇
排序方式: 共有1455条查询结果,搜索用时 15 毫秒
91.

Background

Empyema is an increasingly frequent clinical problem worldwide, and has substantial morbidity and mortality. Our objectives were to identify the clinical, surgical and microbiological features, and management outcomes, of empyema.

Methods

A retrospective observational study over 12 years (1999–2010) was carried out at The Heart Hospital, London, United Kingdom. Patients with empyema were identified by screening the hospital electronic ‘Clinical Data Repository’. Demographics, clinical and microbiological characteristics, underlying risk factors, peri-operative blood tests, treatment and outcomes were identified. Univariable and multivariable statistical analyses were performed.

Results

Patients (n = 406) were predominantly male (74.1%); median age = 53 years (IQR = 37–69). Most empyema were community-acquired (87.4%) and right-sided (57.4%). Microbiological diagnosis was obtained in 229 (56.4%) patients, and included streptococci (16.3%), staphylococci (15.5%), Gram-negative organisms (8.9%), anaerobes (5.7%), pseudomonads (4.4%) and mycobacteria (9.1%); 8.4% were polymicrobial. Most (68%) cases were managed by open thoracotomy and decortication. Video-assisted thoracoscopic surgery (VATS) reduced hospitalisation from 10 to seven days (P = 0.0005). All-cause complication rate was 25.1%, and 28 day mortality 5.7%. Predictors of early mortality included: older age (P = 0.006), major co-morbidity (P = 0.01), malnutrition (P = 0.001), elevated red cell distribution width (RDW, P<0.001) and serum alkaline phosphatase (P = 0.004), and reduced serum albumin (P = 0.01) and haemoglobin (P = 0.04).

Conclusions

Empyema remains an important cause of morbidity and hospital admissions. Microbiological diagnosis was only achieved in just over 50% of cases, and tuberculosis is a notable causative organism. Treatment of empyema with VATS may reduce duration of hospital stay. Raised RDW appears to associate with early mortality.  相似文献   
92.
The discovery and efficacy of a series of potent aminopyrrolidineamide-based inhibitors of sterol regulatory element binding protein site-1 protease is described.  相似文献   
93.
The 4-(3-phenylprop-1-yl)piperidine moiety of the 1,3,4-trisubstituted pyrrolidine CCR5 antagonist 1 was modified with electron deficient aromatics as well as replacement of the benzylic methylene with sulfones, gem-difluoromethylenes and alcohols in an effort to balance the antiviral potency with reasonable pharmacokinetics.  相似文献   
94.

Background

Artesunate, an artemisinin-derived monomer, was reported to inhibit Cytomegalovirus (CMV) replication. We aimed to compare the in-vitro anti-CMV activity of several artemisinin-derived monomers and newly synthesized artemisinin dimers.

Methods

Four artemisinin monomers and two novel artemisinin-derived dimers were tested for anti-CMV activity in human fibroblasts infected with luciferase-tagged highly–passaged laboratory adapted strain (Towne), and a clinical CMV isolate. Compounds were evaluated for CMV inhibition and cytotoxicity.

Results

Artemisinin dimers effectively inhibited CMV replication in human foreskin fibroblasts and human embryonic lung fibroblasts (EC50 for dimer sulfone carbamate and dimer primary alcohol 0.06±0.00 µM and 0.15±0.02 µM respectively, in human foreskin fibroblasts) with no cytotxicity at concentrations required for complete CMV inhibition. All four artemisinin monomers (artemisinin, artesunate, artemether and artefanilide) shared a similar degree of CMV inhibition amongst themselves (in µM concentrations) which was significantly less than the inhibition achieved with artemisinin dimers (P<0.0001). Similar to monomers, inhibition of CMV with artemisinin dimers appeared early in the virus life cycle as reflected by decreased expression of the immediate early (IE1) protein.

Conclusions

Artemisinin dimers are potent and non-cytotoxic inhibitors of CMV replication. These compounds should be studied as potential therapeutic agents for the treatment of CMV infection in humans.  相似文献   
95.
The purpose of this study was to determinewhether the increase in insulin sensitivity of skeletal muscle glucosetransport induced by a single bout of exercise is mediated by enhancedtranslocation of the GLUT-4 glucose transporter to the cell surface.The rate of3-O-[3H]methyl-D-glucosetransport stimulated by a submaximally effective concentration ofinsulin (30 µU/ml) was approximately twofold greater in the musclesstudied 3.5 h after exercise than in those of the sedentary controls(0.89 ± 0.10 vs. 0.43 ± 0.05 µmol · ml1 · 10 min1; means ± SE forn = 6/group). GLUT-4 translocation wasassessed by using theATB-[2-3H]BMPAexofacial photolabeling technique. Prior exercise resulted in greatercell surface GLUT-4 labeling in response to submaximal insulintreatment (5.36 ± 0.45 dpm × 103/g in exercised vs. 3.00 ± 0.38 dpm × 103/g insedentary group; n = 10/group) thatclosely mirrored the increase in glucose transport activity. The signalgenerated by the insulin receptor, as reflected in the extent ofinsulin receptor substrate-1 tyrosine phosphorylation, was unchangedafter the exercise. We conclude that the increase in muscle insulinsensitivity of glucose transport after exercise is due to translocationof more GLUT-4 to the cell surface and that this effect is not due topotentiation of insulin-stimulated tyrosine phosphorylation.

  相似文献   
96.
97.
Processing of the GagPol polyprotein precursor of human immunodeficiency virus type 1 (HIV-1) is a critical step in viral assembly and replication. The HIV-1 protease (PR) is translated as part of GagPol and is both necessary and sufficient for precursor processing. The PR is active only as a dimer; enzyme activation is initiated when the PR domains in two GagPol precursors dimerize. The precise mechanism by which the PR becomes activated and the subsequent initial steps in precursor processing are not well understood. However, it is clear that processing is initiated by the PR domain that is embedded within the precursor itself. We have examined the earliest events in precursor processing using an in vitro assay in which full-length GagPol is cleaved by its embedded PR. We demonstrate that the embedded, immature PR is as much as 10,000-fold less sensitive to inhibition by an active-site PR inhibitor than is the mature, free enzyme. Further, we find that different concentrations of the active-site inhibitor are required to inhibit the processing of different cleavage sites within GagPol. Finally, our results indicate that the first cleavages carried out by the activated PR within GagPol are intramolecular. Overall, our data support a model of virus assembly in which the first cleavages occur in GagPol upstream of the PR. These intramolecular cleavages produce an extended form of PR that completes the final processing steps accompanying the final stages of particle assembly by an intermolecular mechanism.  相似文献   
98.
Human cytomegalovirus (HCMV), a betaherpesvirus, can cause severe disease in immunosuppressed patients and following congenital infection. A vaccine that induces both humoral and cellular immunity may be required to prevent congenital infection. Dense bodies (DBs) are complex, noninfectious particles produced by HCMV-infected cells and may represent a vaccine option. As knowledge of the antigenicity and immunogenicity of DB is incomplete, we explored characterization methods and defined DB production methods, followed by systematic evaluation of neutralization and cell-mediated immune responses to the DB material in BALB/c mice. DBs purified from Towne-infected cultures treated with the viral terminase inhibitor 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) were characterized by nanoparticle tracking analysis (NTA), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), immunoblotting, quantitative enzyme-linked immunosorbent assay, and other methods. The humoral and cellular immune responses to DBs were compared to the immunogenicity of glycoprotein B (gB) administered with the adjuvant AddaVax (gB/AddaVax). DBs induced neutralizing antibodies that prevented viral infection of cultured fibroblasts and epithelial cells and robust cell-mediated immune responses to multiple viral proteins, including pp65, gB, and UL48. In contrast, gB/AddaVax failed to induce neutralizing antibodies that prevented infection of epithelial cells, highlighting a critical difference in the humoral responses induced by these vaccine candidates. Our data advance the potential for the DB vaccine approach, demonstrate important immunogenicity properties, and strongly support the further evaluation of DBs as a CMV vaccine candidate.  相似文献   
99.
100.
The use of Process Analytical Technology tools coupled with chemometrics has been shown great potential for better understanding and control of mammalian cell cultivations through real-time process monitoring. In-line Raman spectroscopy was utilized to determine the glucose concentration of the complex bioreactor culture medium ensuring real-time information for our process control system. This work demonstrates a simple and fast method to achieve a robust partial least squares calibration model under laboratory conditions in an early phase of the development utilizing shake flask and bioreactor cultures. Two types of dynamic feeding strategies were accomplished where the multi-component feed medium additions were controlled manually and automatically based on the Raman monitored glucose concentration. The impact of these dynamic feedings was also investigated and compared to the traditional bolus feeding strategy on cellular metabolism, cell growth, productivity, and binding activity of the antibody product. Both manual and automated dynamic feeding strategies were successfully applied to maintain the glucose concentration within a narrower and lower concentration range. Thus, besides glucose, the glutamate was also limited at low level leading to reduced production of inhibitory metabolites, such as lactate and ammonia. Consequently, these feeding control strategies enabled to provide beneficial cultivation environment for the cells. In both experiments, higher cell growth and prolonged viable cell cultivation were achieved which in turn led to increased antibody product concentration compared to the reference bolus feeding cultivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号