首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1108篇
  免费   93篇
  2022年   10篇
  2021年   12篇
  2020年   11篇
  2019年   8篇
  2018年   8篇
  2017年   10篇
  2016年   23篇
  2015年   48篇
  2014年   53篇
  2013年   61篇
  2012年   66篇
  2011年   69篇
  2010年   36篇
  2009年   55篇
  2008年   79篇
  2007年   52篇
  2006年   61篇
  2005年   66篇
  2004年   70篇
  2003年   70篇
  2002年   66篇
  2001年   13篇
  2000年   16篇
  1999年   16篇
  1998年   18篇
  1997年   14篇
  1996年   11篇
  1995年   14篇
  1994年   9篇
  1993年   9篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   9篇
  1981年   8篇
  1980年   3篇
  1979年   8篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1974年   8篇
  1970年   3篇
排序方式: 共有1201条查询结果,搜索用时 218 毫秒
931.
Reactive oxygen species (ROS) are critical in a broad spectrum of cellular processes including signaling, tumor progression, and innate immunity. The essential nature of ROS signaling in the immune systems of Drosophila and zebrafish has been demonstrated; however, the role of ROS, if any, in mammalian adaptive immune system development and function remains unknown. This work provides the first clear demonstration that thymus-specific elevation of mitochondrial superoxide (O2??) disrupts normal T cell development and impairs the function of the mammalian adaptive immune system. To assess the effect of elevated mitochondrial superoxide in the developing thymus, we used a T-cell-specific knockout of manganese superoxide dismutase (i.e., SOD2) and have thus established a murine model to examine the role of mitochondrial superoxide in T cell development. Conditional loss of SOD2 led to increased superoxide, apoptosis, and developmental defects in the T cell population, resulting in immunodeficiency and susceptibility to the influenza A virus H1N1. This phenotype was rescued with mitochondrially targeted superoxide-scavenging drugs. These findings demonstrate that loss of regulated levels of mitochondrial superoxide lead to aberrant T cell development and function, and further suggest that manipulations of mitochondrial superoxide levels may significantly alter clinical outcomes resulting from viral infection.  相似文献   
932.
Rhou encodes a Cdc42-related atypical Rho GTPase that influences actin organization in cultured cells. In mouse embryos at early-somite to early-organogenesis stages, Rhou is expressed in the columnar endoderm epithelium lining the lateral and ventral wall of the anterior intestinal portal. During foregut development, Rhou is downregulated in regions where the epithelium acquires a multilayered morphology heralding the budding of organ primordia. In embryos generated from Rhou knockdown embryonic stem (ES) cells, the embryonic foregut displays an abnormally flattened shape. The epithelial architecture of the endoderm is disrupted, the cells are depleted of microvilli and the phalloidin-stained F-actin content of their sub-apical cortical domain is reduced. Rhou-deficient cells in ES cell-derived embryos and embryoid bodies are less efficient in endoderm differentiation. Impaired endoderm differentiation of Rhou-deficient ES cells is accompanied by reduced expression of c-Jun/AP-1 target genes, consistent with a role for Rhou in regulating JNK activity. Downregulation of Rhou in individual endoderm cells results in a reduced ability of these cells to occupy the apical territory of the epithelium. Our findings highlight epithelial morphogenesis as a required intermediate step in the differentiation of endoderm progenitors. In vivo, Rhou activity maintains the epithelial architecture of the endoderm progenitors, and its downregulation accompanies the transition of the columnar epithelium in the embryonic foregut to a multilayered cell sheet during organ formation.  相似文献   
933.
Calcium flux into and out of the sarco(endo)plasmic reticulum is vitally important to cardiac function because the cycle of calcium entry and exit controls contraction and relaxation. Putative estrogen and androgen consensus binding sites near to a CpG island are present in the cardiac calsequestrin 2 (CSQ2) promoter. Cardiomyocytes express sex hormone receptors and respond to sex hormones. We hypothesized that sex hormones control CSQ2 expression in cardiomyocytes and so affect cardiac structure/function. Echocardiographic analysis of male and female C57bl6n mice identified thinner walled and lighter hearts in females and significant concentric remodeling after long-term gonadectomy. CSQ2 and sodium-calcium exchanger-1 (NCX1) expression was significantly increased in female compared with male hearts and decreased postovariectomy. NCX1, but not CSQ2, expression was increased postcastration. CSQ2 expression was reduced when H9c2 cells were cultured in hormone-deficient media; increased when estrogen receptor-α (ERα), estrogen receptor-β (ERβ), or androgen agonists were added; and increased in hearts from ERβ-deficient mice. CSQ2 expression was reduced in mice fed a diet low in the methyl donor folic acid and in cells treated with 5-azadeoxycytidine suggesting an involvement of DNA methylation. DNA methylation in CpG in the CSQ2 CpG island was significantly different in males and females and was additionally changed postgonadectomy. Expression of DNA methyltransferases 1, 3a, and 3b was unchanged. These studies strongly link sex hormone-directed changes in CSQ2 expression to DNA methylation with changed expression correlated with altered left ventricular structure and function.  相似文献   
934.
RNase J is an essential enzyme in Bacillus subtilis with unusual dual endonuclease and 5'-to-3' exonuclease activities that play an important role in the maturation and degradation of mRNA. RNase J is also a component of the recently identified "degradosome" of B. subtilis. We report the crystal structure of RNase J1 from B. subtilis to 3.0?? resolution, analysis of which reveals it to be in an open conformation suitable for binding substrate RNA. RNase J is a member of the β-CASP family of zinc-dependent metallo-β-lactamases. We have exploited this similarity in constructing a model for an RNase J1:RNA complex. Analysis of this model reveals candidate-stacking interactions with conserved aromatic side chains, providing a molecular basis for the observed enzyme activity. Comparisons of the B. subtilis RNase J structure with related enzymes reveal key differences that provide insights into conformational changes during catalysis and the role of the C-terminal domain.  相似文献   
935.
In industrialized societies, more than 1 in 3 dogs and people currently qualify as overweight or obese. Experts in public health expect both these figures to rise. Although clinical treatment remains important, so are public perceptions and social norms. This article presents a thematic analysis of English-language mass media coverage on canine obesity from 2000 through 2009 and compares these results with a thematic analysis of articles on canine obesity in leading veterinary journals during the same time period. Drawing on Giddens's theory of structuration, this study identified articles that emphasized individual agency, environmental structure, or both as contributors to canine obesity. Comparisons with weight-related health problems in human populations were virtually absent from the veterinary sample. Although such comparisons were almost always present in the media sample, quotations from veterinarians and other spokespeople for the welfare of nonhuman animals emphasized the agency of individual caregivers (owners) over structural influences. Now that weight gain and obesity have been established as a pressing animal welfare problem, these results suggest a need for research and for interventions, such as media advocacy, that emphasize intersections between animal-owner agency, socioenvironmental determinants, and connections between animal welfare and human health.  相似文献   
936.
Theiler’s murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.  相似文献   
937.
Notwithstanding the well-characterised roles of a number of oncogenes in neoplastic transformation, microRNAs (miRNAs) are increasingly implicated in several human cancers. Discovery of miRNAs in several oncogenic herpesviruses such as KSHV has further highlighted the potential of virus-encoded miRNAs to contribute to their oncogenic capabilities. Nevertheless, despite the identification of several possible cancer-related genes as their targets, the direct in vivo role of virus-encoded miRNAs in neoplastic diseases such as those induced by KSHV is difficult to demonstrate in the absence of suitable models. However, excellent natural disease models of rapid-onset Marek's disease (MD) lymphomas in chickens allow examination of the oncogenic potential of virus-encoded miRNAs. Using viruses modified by reverse genetics of the infectious BAC clone of the oncogenic RB-1B strain of MDV, we show that the deletion of the six-miRNA cluster 1 from the viral genome abolished the oncogenicity of the virus. This loss of oncogenicity appeared to be primarily due to the single miRNA within the cluster, miR-M4, the ortholog of cellular miR-155, since its deletion or a 2-nucleotide mutation within its seed region was sufficient to inhibit the induction of lymphomas. The definitive role of this miR-155 ortholog in oncogenicity was further confirmed by the rescue of oncogenic phenotype by revertant viruses that expressed either the miR-M4 or the cellular homolog gga-miR-155. This is the first demonstration of the direct in vivo role of a virus-encoded miRNA in inducing tumors in a natural infection model. Furthermore, the use of viruses deleted in miRNAs as effective vaccines against virulent MDV challenge, enables the prospects of generating genetically defined attenuated vaccines.  相似文献   
938.
Mott C  Symington LS 《DNA Repair》2011,10(4):408-415
Recombination between inverted repeats is RAD52 dependent, but reduced only modestly in the rad51Δ mutant. RAD59 is required for RAD51-independent inverted-repeat recombination, but no clear mechanism for how recombination occurs in the absence of RAD51 has emerged. Because Rad59 is thought to function as an accessory factor for the single-strand annealing activity of Rad52 one possible mechanism for spontaneous recombination could be by strand annealing between repeats at a stalled replication fork. Here we demonstrate the importance of the Rad52 single-strand annealing activity for generating recombinants by showing suppression of the rad52Δ, rad51Δ rad52Δ and rad52Δ rad59Δ inverted-repeat recombination defects by the rfa1-D228Y mutation. In addition, formation of recombinants in the rad51Δ mutant was sensitive to the distance between the inverted repeats, consistent with a replication-based mechanism. Deletion of RAD5 or RAD18, which are required for error-free post-replication repair, reduced the recombination rate in the rad59Δ mutant, but not in wild type. These data are consistent with RAD51-independent recombinants arising by a faulty template switch mechanism that is distinct from nascent strand template switching.  相似文献   
939.
Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 h exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 h of environmental exposure to Florida red tide aerosols for up to 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red tides do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period.  相似文献   
940.
The ability to differentiate embryonic stem cells (ESCs) into specific cell types is critical for improved regenerative medicine strategies, cancer chemotherapeutic approaches, and regimens to combat chronic diseases associated with aging. Subclasses of motor neurons (MNs) are generated at different positions along the rostrocaudal axis of the spinal cord, and the signals that specify MN subtype fates remain poorly defined. We show here that the cytochrome P450 enzyme Cyp26a1, which metabolizes all-trans-retinoic acid (RA) and thereby reduces RA levels, plays a crucial role in specifying MN columnar subtypes. Lack of Cyp26a1 in ESCs during differentiation to spinal MNs increases Aldh1a2 (RALDH2) and Hoxc6, markers of the Hox-dependent, lateral motor column (LMC) subtype identity. In contrast, Lhx3, a marker for median motor column identity, showed lower expression in Cyp26a1−/−-derived MNs compared with WT. Without Cyp26a1, an increase in intracellular RA concentration plus sonic hedgehog agonist treatment confer an LMC fate on differentiating MNs. Our data suggest a strategy for increasing LMC-type MNs from ESCs by blocking Cyp26a1 in cell replacement/ESC differentiation therapy to treat neurodegenerative diseases, such as amyotrophic lateral sclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号