首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2756篇
  免费   247篇
  国内免费   5篇
  2023年   11篇
  2022年   18篇
  2021年   37篇
  2020年   23篇
  2019年   39篇
  2018年   60篇
  2017年   33篇
  2016年   57篇
  2015年   116篇
  2014年   109篇
  2013年   142篇
  2012年   194篇
  2011年   197篇
  2010年   124篇
  2009年   134篇
  2008年   174篇
  2007年   173篇
  2006年   159篇
  2005年   157篇
  2004年   144篇
  2003年   168篇
  2002年   148篇
  2001年   45篇
  2000年   41篇
  1999年   35篇
  1998年   34篇
  1997年   28篇
  1996年   32篇
  1995年   19篇
  1994年   13篇
  1993年   19篇
  1992年   34篇
  1991年   30篇
  1990年   20篇
  1989年   19篇
  1988年   18篇
  1987年   9篇
  1986年   15篇
  1985年   17篇
  1984年   9篇
  1983年   14篇
  1982年   7篇
  1979年   12篇
  1978年   15篇
  1976年   12篇
  1974年   10篇
  1973年   7篇
  1972年   9篇
  1971年   10篇
  1969年   8篇
排序方式: 共有3008条查询结果,搜索用时 15 毫秒
991.

Introduction

Bone marrow lesion (BML) size may be an important imaging biomarker for osteoarthritis-related clinical trials and reducing BML size may be an important therapeutic goal. However, data on the interrelationships between BML size, pain, and structural progression are inconsistent and rarely examined in the same cohort. Therefore, we evaluated the cross-sectional and longitudinal associations of BML volume with knee pain and joint space narrowing (JSN).

Methods

A BML volume assessment was performed on magnetic resonance images of the knee collected at the 24- and 48-month Osteoarthritis Initiative visits from a convenience sample of 404 participants in the progression cohort. During the same visits, knee pain was assessed with WOMAC pain scores and knee radiographs were acquired and scored for JSN. BML volume was summed to generate a total knee volume and an index tibiofemoral compartment volume (compartment with greater baseline JSN). Primary analyses included multiple linear regressions (outcome = pain, predictor = total knee BML volume) and logistic regressions (outcome = JSN, predictor = index tibiofemoral compartment BML volume).

Results

This sample was 49% female with a mean age of 63 (9.2 standard deviation (SD)) years, and 71% had radiographic osteoarthritis in the study knee. Larger baseline BMLs were associated with greater baseline knee pain (P = 0.01), the presence of JSN at baseline (odds ratio (OR) = 1.50, 95% confidence interval (CI) = 1.23 to 1.83), and JSN progression (OR = 1.27, 95%CI = 1.11 to 1.46). Changes in total knee BML volume had a positive association with changes in knee pain severity (P = 0.004) and this association may be driven by knees that were progressing from no or small baseline BMLs to larger BMLs. In contrast, we found no linear positive relationship between BML volume change and JSN progression. Instead, regression of medial tibiofemoral BML volume was associated with JSN progression compared to knees with no or minimal changes in BML volume (OR = 3.36, 95%CI = 1.55 to 7.28). However, follow-up analyses indicated that the association between JSN progression and BML volume change may primarily be influenced by baseline BML volume.

Conclusion

Large baseline BMLs are associated with greater baseline knee pain, the presence of JSN at baseline, and disease progression. Additionally, BML regression is associated with decreased knee pain but not a reduced risk of concurrent JSN progression.  相似文献   
992.
In vitro studies have shown that SCAR/WAVE activates the Arp2/3 complex to generate actin filaments, which in many cell types are organised into lamellipodia that are thought to have an important role in cell migration. Here we demonstrate that SCAR is utilised by Drosophila macrophages to drive their developmental and inflammatory migrations and that it is regulated via the Hem/Kette/Nap1-containing SCAR/WAVE complex. SCAR is also important in protecting against bacterial pathogens and in wound repair as SCAR mutant embryos succumb more readily to both sterile and infected wounds. However, in addition to driving the formation of lamellipodia in macrophages, SCAR is required cell autonomously for the correct processing of phagocytosed apoptotic corpses by these professional phagocytes. Removal of this phagocytic burden by preventing apoptosis rescues macrophage lamellipodia formation and partially restores motility. Our results show that efficient processing of phagosomes is critical for effective macrophage migration in vivo. These findings have important implications for the resolution of macrophages from chronic wounds and the behaviour of those associated with tumours, because phagocytosis of debris may serve to prolong the presence of these cells at these sites of pathology.  相似文献   
993.

Conserving biodiversity in an era of rapid climate change requires understanding the mechanisms that influence dispersal, gene flow and, ultimately, species persistence. This information is becoming critical for conserving key species in rapidly warming places such as the Arctic. Arctic freshwater fish not only face warmer conditions, but also the drying of tundra streams due to climate change. Here, we examined population structure, gene flow, and the influence of landscape features on the neutral genetic variation of the Arctic grayling on Alaska’s North Slope. We estimated the number of genetically distinct clusters and determined effective population sizes for and patterns of gene flow among geographic regions. We predicted that river distance, river drying, distance to the coast, and elevational gradient would influence genetic differentiation for Arctic grayling. Bayesian clustering and discriminant analysis of principal components found support for five or six genetic clusters roughly corresponding to downstream and headwater subwatersheds. Estimates of gene flow revealed asymmetric downstream bias. River distance and river dry zones were significantly associated with increasing genetic differentiation among sampling locations despite this species' high dispersal capability and the temporary nature of dry zones. Isolation and downstream-biased dispersal could contribute to high levels of inter-population genetic variation among the headwaters of the North Slope Arctic grayling metapopulation, which might be particularly important for species conservation during rapid climate change. More generally, small, isolated populations might drive particular alleles to higher frequencies due to selection or drift, thus promoting the genetic potential for rapid evolutionary changes under future climate change.

  相似文献   
994.
Using samples from the New England Centenarian Study (NECS), we sought to characterize the serum proteome of 77 centenarians, 82 centenarians'' offspring, and 65 age‐matched controls of the offspring (mean ages: 105, 80, and 79 years). We identified 1312 proteins that significantly differ between centenarians and their offspring and controls (FDR < 1%), and two different protein signatures that predict longer survival in centenarians and in younger people. By comparing the centenarian signature with 2 independent proteomic studies of aging, we replicated the association of 484 proteins of aging and we identified two serum protein signatures that are specific of extreme old age. The data suggest that centenarians acquire similar aging signatures as seen in younger cohorts that have short survival periods, suggesting that they do not escape normal aging markers, but rather acquire them much later than usual. For example, centenarian signatures are significantly enriched for senescence‐associated secretory phenotypes, consistent with those seen with younger aged individuals, and from this finding, we provide a new list of serum proteins that can be used to measure cellular senescence. Protein co‐expression network analysis suggests that a small number of biological drivers may regulate aging and extreme longevity, and that changes in gene regulation may be important to reach extreme old age. This centenarian study thus provides additional signatures that can be used to measure aging and provides specific circulating biomarkers of healthy aging and longevity, suggesting potential mechanisms that could help prolong health and support longevity.  相似文献   
995.
The recovery of ecosystem processes in severely disturbed systems is often limited by biological resources in the soil. The objective of this study was to direct soil microbial biomass (SMB) size and activity with organic amendments. These amendments were applied to the soil at different amendment locations (incorporated versus surface‐applied) and amounts (none, light, and heavy) in a 2 × 3 factorial design. The size and activity of SMB, soil nutrients, and aboveground biomass were monitored over 3 years to determine the rate and direction of change. Contrary to expectations that SMB and carbon mineralization potential (C‐MIN) would be larger with amendment incorporation, SMB‐carbon was greatest in the surface‐heavy treatment and lowest in the incorporated‐control treatment. SMB‐nitrogen, C‐MIN, and organic carbon were greater in the surface than in the incorporated treatments and in amended plots compared to controls. This departure from expectations suggests that other factors, such as microclimate or vegetation, are interacting with the amendment to affect SMB. The degree of contribution, however, is unclear. The treatments only affected planted aboveground biomass early in the experiment, with greater total biomass in the surface‐light treatment in fall 2003. There was also a significant positive relationship between aboveground biomass and SMB in fall 2004. Inorganic nitrogen, total nitrogen, and the soil quality indicators qCO2 and Cmic/Corg did not vary systematically with amendment treatment. In general, amendment addition did enhance soil biotic properties and supported increased vegetation, but the complication of incorporating the amendment was not necessary for promoting biological development in disturbed soils.  相似文献   
996.
Urban MC 《Ecology letters》2011,14(7):723-732
Given the potential for rapid and microgeographical adaptation, ecologists increasingly are exploring evolutionary explanations for community patterns. Biotic selection can generate local adaptations that alter species interactions. Although some gene flow might be necessary to fuel local adaptation, higher gene flow can homogenise traits across regions and generate local maladaptation. Herein, I estimate the contributions of local biotic selection, gene flow and spatially autocorrelated biotic selection to among-population divergence in traits involved in species interactions across 75 studies. Local biotic selection explained 6.9% of inter-population trait divergence, an indirect estimate of restricted gene flow explained 0.1%, and spatially autocorrelated selection explained 9.3%. Together, biotic selection explained 16% of the variance in population trait means. Most biotic selection regimes were spatially autocorrelated. Hence, most populations receive gene flow from populations facing similar selection, which could allow for local adaptation despite moderate gene flow. Gene flow constrained adaptation in studies conducted at finer spatial scales as expected, but this effect was often confounded with spatially autocorrelated selection. Results indicate that traits involved in species interactions might often evolve across landscapes, especially when biotic selection is spatially autocorrelated. The frequent evolution of species interactions suggests that evolutionary processes might often influence community ecology.  相似文献   
997.
998.
Nucleus pulposus (NP) cells of the intervertebral disk (IVD) have unique morphological characteristics and biologic responses to mechanical stimuli that may regulate maintenance and health of the IVD. NP cells reside as single cell, paired or multiple cells in a contiguous pericellular matrix (PCM), whose structure and properties may significantly influence cell and extracellular matrix mechanics. In this study, a computational model was developed to predict the stress–strain, fluid pressure and flow fields for cells and their surrounding PCM in the NP using three-dimensional (3D) finite element models based on the in situ morphology of cell–PCM regions of the mature rat NP, measured using confocal microscopy. Three-dimensional geometries of the extracellular matrix and representative cell–matrix units were used to construct 3D finite element models of the structures as isotropic and biphasic materials. In response to compressive strain of the extracellular matrix, NP cells and PCM regions were predicted to experience volumetric strains that were 1.9–3.7 and 1.4–2.1 times greater than the extracellular matrix, respectively. Volumetric and deviatoric strain concentrations were generally found at the cell/PCM interface, while von Mises stress concentrations were associated with the PCM/extracellular matrix interface. Cell–matrix units containing greater cell numbers were associated with higher peak cell strains and lower rates of fluid pressurization upon loading. These studies provide new model predictions for micromechanics of NP cells that can contribute to an understanding of mechanotransduction in the IVD and its changes with aging and degeneration.  相似文献   
999.
The hellbender (Cryptobranchus alleganiensis) is an obligately aquatic salamander that is in decline due to habitat loss and disease. Two subspecies of hellbender have been described based on morphological characteristics: C. a. alleganiensis (eastern subspecies) and C. a. bishopi (Ozark hellbender). Current conservation strategies include captive propagation for restorative releases even though information regarding the current levels of genetic variability and structure within populations is not sufficient to effectively plan for conservation of the genetic diversity of the species. To investigate patterns of population structure in the hellbender, we genotyped 276 hellbenders from eight Missouri River drainages, representing both subspecies. Our results showed low levels of within-drainage diversity but strong population structure among rivers, and three distinct genetic clusters. F ST values ranged from 0.00 to 0.61 and averaged 0.40. Our results confirmed previous reports that C. a. bishopi and C. a. alleganiensis are genetically distinct, but also revealed an equidistant relationship between two groups within C. a. bishopi and all populations of C. a. alleganiensis. Current subspecies delineations do not accurately incorporate genetic structure, and for conservation purposes, these three groups should be considered evolutionarily significant units.  相似文献   
1000.
Azaspiracids (AZAs) are a group of lipophilic polyether compounds first detected in Ireland which have been implicated in shellfish poisoning incidents around Europe. These toxins regularly effect shellfish mariculture operations including protracted closures of shellfish harvesting areas for human consumption. The armoured dinoflagellate Azadinium spinosum Elbrächter et Tillmann gen. et sp. nov. (Dinophyceae) has been described as the de novo azaspiracid toxin producer; nonetheless the link between this organism and AZA toxin accumulation in shellfish has not yet been established. In August 2009, shellfish samples of blue mussel (Mytilus edulis) from the Southwest of Ireland were analysed using liquid chromatography–tandem-mass spectrometry (LC–MS/MS) and were found to be above the regulatory limit (0.16 μg g−1 AZA-equiv.) for AZAs. Water samples from this area were collected and one algal isolate was identified as A. spinosum and was shown to produce azaspiracid toxins. This is the first strain of A. spinosum isolated from Irish waters. The Irish A. spinosum is identical with the other two available A. spinosum strains from Scotland (3D9) and from Denmark (UTHE2) in its sequence of the D1–D2 regions of the LSU rDNA.A 24 h feeding trial of blue mussels (M. edulis) using an algal suspension of the Irish A. spinosum culture at different cell densities demonstrated that A. spinosum is filtered, consumed and digested directly by mussels. Also, LC–MS/MS analysis had shown that AZAs were accumulating in the shellfish hepatopancreas. The toxins AZA1 and -2 were detected in the shellfish together with the AZA analogues AZA3, AZA6, AZA17 and -19 suggesting that AZA1 and -2 are metabolised in the shellfish within the first 24 h after ingestion of the algae. The levels of AZA17 detected in the shellfish hepatopancreas (HP) were equivalent to the levels of AZA1 but in the remainder tissues the levels of AZA17 were four to five times higher than that of AZA1, only small quantities of AZA3 and -19 were present with negligible amounts of AZA6 detected after the 24 h period. This could have implications in the future monitoring of these toxins given that at present according to EU legislation only AZA1–AZA3 is regulated for. This is the first report of blue mussels’ (M. edulis) feeding on the azaspiracid producing algae A. spinosum from Irish waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号