首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1491篇
  免费   106篇
  2022年   12篇
  2021年   24篇
  2020年   9篇
  2019年   19篇
  2018年   21篇
  2017年   16篇
  2016年   24篇
  2015年   42篇
  2014年   54篇
  2013年   59篇
  2012年   112篇
  2011年   152篇
  2010年   106篇
  2009年   79篇
  2008年   90篇
  2007年   78篇
  2006年   87篇
  2005年   60篇
  2004年   54篇
  2003年   38篇
  2002年   47篇
  2001年   23篇
  2000年   27篇
  1999年   20篇
  1998年   8篇
  1997年   14篇
  1996年   11篇
  1995年   13篇
  1994年   8篇
  1993年   12篇
  1992年   30篇
  1991年   20篇
  1990年   12篇
  1989年   21篇
  1988年   9篇
  1987年   11篇
  1986年   9篇
  1985年   23篇
  1983年   9篇
  1982年   8篇
  1981年   10篇
  1980年   8篇
  1979年   5篇
  1978年   5篇
  1977年   7篇
  1976年   9篇
  1974年   8篇
  1973年   11篇
  1970年   5篇
  1969年   10篇
排序方式: 共有1597条查询结果,搜索用时 15 毫秒
151.
Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.  相似文献   
152.
Behavior genetics studies in mice demand efficient training protocols for rapid phenotypic screening. However, the capacity of neonatal mice to form and retain associative memories has been difficult to study due to their limited sensorimotor capacities. The present study describes a method for robust, naturalistic associative learning in neonatal mice as young as 3 days old. After removal of the dam from the home cage for 2 h, preweanling CD-1 mice of ages 3, 5, and 10 days postnatal were conditioned to associate an arbitrary odorant with the suckling and milk delivery that ensued upon her return to the home cage. After a second maternal deprivation, neonates were tested on their acquired preference for that odorant. Neonates exhibited a learned preference for the conditioned odorant over a novel control odorant. No learning was observed without deprivation, that is, when the dam was removed only briefly for scenting. One-trial learning sufficed to show clear preferences for the conditioned odorant, although repeated training (three sessions over 8 days) significantly increased the expression of preference. The development of neonatal associative learning protocols requiring minimal human intervention is important for the behavioral phenotyping of mutant and transgenic strains, particularly those modeling developmental disorders.  相似文献   
153.
The functionality of the secretory pathway relies on the efficient transfer of cargo molecules from their site of synthesis in the endoplasmic reticulum (ER) to successive compartments within the pathway. Although transport mechanisms of secretory proteins have been studied in detail in various non-plant systems, it is only recently that our knowledge of secretory routes in plants has expanded dramatically. This review focuses on exciting new findings concerning the exit mechanisms of cargo proteins from the plant ER and the role of ER export sites in this process.  相似文献   
154.
Single nucleotide RNA choreography   总被引:1,自引:1,他引:0  
New structural analysis methods, and a tree formalism re-define and expand the RNA motif concept, unifying what previously appeared to be disparate groups of structures. We find RNA tetraloops at high frequencies, in new contexts, with unexpected lengths, and in novel topologies. The results, with broad implications for RNA structure in general, show that even at this most elementary level of organization, RNA tolerates astounding variation in conformation, length, sequence and context. However the variation is not random; it is well-described by four distinct modes, which are 3-2 switches (backbone topology variations), insertions, deletions and strand clips.  相似文献   
155.
156.
157.
We compare the biomass partitioning patterns and the nitrogen/phosphorus (N,P) stoichiometry of the current-year shoots of tree and herbaceous species and ask whether they scale in the same ways. Our analyses indicate that few statistically significant differences exist between the shoot biomass partitioning patterns of the two functional species-groups. In contrast, statistically significant N,P - stoichiometric differences exist between the two functional groups. Across all species, dry leaf mass scales nearly as the square of basal stem diameter and isometrically with respect to dry stem mass. However, total leaf N scales as the 1.37-power and as the 1.09-power of total leaf P across herbaceous and tree shoots, respectively. Therefore, tree shoots can be viewed as populations of herbs elevated by their older, woody herbaceous cohorts. However, tree leaf stoichiometry cannot be modelled in terms of herbaceous N,P - leaf stoichiometry.  相似文献   
158.
Homosporous ferns have extremely high chromosome numbers relative to flowering plants, but the species with the lowest chromosome numbers show gene expression patterns typical of diploid organisms, suggesting that they may be diploidized ancient polyploids. To investigate the role of polyploidy in fern genome evolution, and to provide permanent genetic resources for this neglected group, we constructed a high-resolution genetic linkage map of the homosporous fern model species, Ceratopteris richardii (n = 39). Linkage map construction employed 488 doubled haploid lines (DHLs) that were genotyped for 368 RFLP, 358 AFLP, and 3 isozyme markers. Forty-one linkage groups were recovered, with average spacing between markers of 3.18 cM. Most loci (approximately 76%) are duplicated and most duplicates occur on different linkage groups, indicating that as in other eukaryotic genomes, gene duplication plays a prominent role in shaping the architecture of fern genomes. Although past polyploidization is a potential mechanism for the observed abundance of gene duplicates, a wide range in the number of gene duplicates as well as the absence of large syntenic regions consisting of duplicated gene copies implies that small-scale duplications may be the primary mode of gene duplication in C. richardii. Alternatively, evidence of past polyploidization(s) may be masked by extensive chromosomal rearrangements as well as smaller-scale duplications and deletions following polyploidization(s).  相似文献   
159.
Within a population, only phenotypic variation that is influenced by genes will respond to selection. Genes with pleiotropic effects are known to influence numerous traits, complicating our understanding of their evolution through time. Here we use quantitative genetic analyses to identify and estimate the shared genetic effects between molar size and trunk length in a pedigreed, breeding population of baboons housed at the Southwest National Primate Research Center. While crown area has a genetic correlation with trunk length, specific linear measurements yield different results. We find that variation in molar buccolingual width and trunk length is influenced by overlapping additive genetic effects. In contrast, mesiodistal molar length appears to be genetically independent of body size. This is the first study to demonstrate a significant genetic correlation between tooth size and body size in primates. The evolutionary implications are discussed.  相似文献   
160.
The draft genome sequences from two subspecies of rice are powerful new tools for gene discovery in the grasses. Genome-wide comparisons of gene content and order will also shed new light on evolutionary processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号