首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   4篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   8篇
  2015年   5篇
  2014年   10篇
  2013年   15篇
  2012年   14篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   4篇
  2004年   5篇
  2003年   10篇
  2002年   14篇
  2001年   4篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
81.
The role of 3,5,3'-triiodo-l-thyronine (T3) and its metabolite 3,5-diiodo-l-thyronine (T2) in modulating the intracellular Ca(2+) concentration ([Ca(2+)](i)) and endogenous nitric oxide (NO) synthesis was evaluated in pituitary GH(3) cells in the absence or presence of extracellular Ca(2+). When applied in Ca(2+)-free solution, T2 and T3 increased [Ca(2+)](i), in a dose-dependent way, and NO levels. Inhibition of neuronal NO synthase by N(G)-nitro-l-arginine methyl ester and l-n(5)-(1-iminoethyl)ornithine hydrochloride significantly reduced the [Ca(2+)](i) increase induced by T2 and T3. However, while depletion of inositol trisphosphate-dependent Ca(2+) stores did not interfere with the T2- and T3-induced [Ca(2+)](i) increases, the inhibition of phosphatidylinositol 3-kinase by LY-294002 and the dominant negative form of Akt mutated at the ATP binding site prevented these effects. Furthermore, the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone prevented the increases in both [Ca(2+)](i) and NO elicited by T2 or T3. Interestingly, rotenone blocked the early [Ca(2+)](i) increases elicited by T2 and T3, while antimycin prevented only that elicited by T3. Inhibition of mitochondrial Na(+)/Ca(2+) exchanger by CGP37157 significantly reduced the [Ca(2+)](i) increases induced by T2 and T3. In the presence of extracellular calcium (1.2 mM), under carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, T2 and T3 increased both [Ca(2+)](i) and intracellular Na(+) concentration; nimodipine reduced the [Ca(2+)](i) increases elicited by T2 and T3, but inhibition of NO synthase and blockade of the Na(+)/H(+) pump by 5-(N-ethyl-N-isopropyl)amiloride prevented only that elicited by T3; and CB-DMB, bisindolylmaleimide, and LY-294002 (inhibitors of the Na(+)/Ca(2+) exchanger, PKC, and phosphatidylinositol 3-kinase, respectively) failed to modify the T2- and T3-induced effects. Collectively, the present results suggest that T2 and T3 exert short-term nongenomic effects on intracellular calcium and NO by modulating plasma membrane and mitochondrial pathways that differ between these iodothyronines.  相似文献   
82.
The perception of events in space and time is at the root of our interactions with the environment. The precision with which we perceive visual events in time enables us to act upon objects with great accuracy and the loss of such functions due to brain lesions can be catastrophic. We outline a visual timing mechanism that deals with the trajectory of an object's existence across time, a crucial function when keeping track of multiple objects that temporally overlap or occur sequentially. Recent evidence suggests these functions are served by an extended network of areas, which we call the 'when' pathway. Here we show that the when pathway is distinct from and interacts with the well-established 'where' and 'what' pathways.  相似文献   
83.
84.
The TrkA receptor is activated primarily by nerve growth factor (NGF), but it can also be activated by high concentrations of neurotrophin 3 (NT-3). The pan-neurotrophin receptor p75(NTR) strongly inhibits activation of TrkA by NT-3 but not by NGF. To examine the role of p75(NTR) in regulating the specificity of TrkA signaling, we expressed both receptors in Xenopus oocytes. Application of NGF or NT-3 to oocytes expressing TrkA alone resulted in efflux of (45)Ca(2+) by a phospholipase C-gamma-dependent pathway. Coexpression of p75(NTR) with TrkA inhibited (45)Ca(2+) efflux in response to NT-3 but not NGF. The inhibitory effect on NT-3 activation of TrkA increased with increasing expression of p75(NTR). Coexpression of a truncated p75(NTR) receptor lacking all but the first 9 amino acids of the cytoplasmic domain inhibited NT-3 stimulation of (45)Ca(2+) efflux, whereas coexpression of an epidermal growth factor receptor/p75(NTR) chimera (extracellular domain of epidermal growth factor receptor with transmembrane and cytoplasmic domains of p75(NTR)) did not inhibit NT-3 signaling through TrkA. These studies demonstrated that the extracellular domain of p75(NTR) was necessary to inhibit NT-3 signaling through TrkA. Remarkably, p75(NTR) binding to NT-3 was not required to prevent signaling through TrkA, since occupying p75(NTR) with brain-derived neurotrophic factor or anti-p75 antibody (REX) did not rescue the ability of NT-3 to activate (45)Ca(2+) efflux. These data suggested a physical association between TrkA and p75(NTR). Documenting this physical interaction, we showed that p75(NTR) and TrkA could be coimmunoprecipitated from Xenopus oocytes. Our results suggest that the interaction of these two receptors on the cell surface mediated the inhibition of NT-3-activated signaling through TrkA.  相似文献   
85.
Molecular basis of bilirubin-induced neurotoxicity   总被引:8,自引:0,他引:8  
Unconjugated bilirubin (UCB), at slightly elevated unbound concentrations, is toxic to astrocytes and neurons, damaging mitochondria (causing impaired energy metabolism and apoptosis) and plasma membranes (causing oxidative damage and disrupting transport of neurotransmitters). Accumulation of UCB in the CSF and CNS is limited by its active export, probably mediated by MRP1/Mrp1 present in choroid plexus epithelia, capillary endothelia, astrocytes and neurons. Upregulation of MRP1/Mrp1 protein levels by UCB might represent an important adaptive mechanism that protects the CNS from UCB toxicity. These concepts could explain the varied susceptibility of newborns to bilirubin neurotoxicity and the occurrence of neurological damage at plasma UCB concentrations well below therapeutic guidelines, and are relevant to the increasing prevalence of bilirubin encephalopathy in newborns.  相似文献   
86.
The target-derived neurotrophic factor "nerve growth factor" (NGF) signals through TrkA to promote the survival, differentiation, and maintenance of neurons. How the NGF signal in axon terminals is conveyed to the cell body is unknown. The "signaling endosome hypothesis" envisions that NGF-TrkA complexes are internalized at the axon terminal and retrogradely transported to the cell body. Following NGF treatment, we found that clathrin-coated vesicles contained NGF bound to TrkA together with activated signaling proteins of the Ras-MAP kinase pathway. Evidence that these vesicles could signal was their ability in vitro to activate Elk, a downstream target of Erk1/2. Our results point to the existence of a population of signaling endosomes derived from clathrin-coated membranes in NGF-treated cells.  相似文献   
87.
Alpha-1,4-Linked oligogalacturonides (OGs) are pectic fragments of the plant cell wall that are perceived by the plant cell as signalling molecules. Using cytosolic aequorin-expressing soybean (Glycine max L.) cells, we have analysed cytosolic Ca(2+) changes and the oxidative burst induced by OGs with different degrees of polymerization. Our results provide evidence that different OGs are sensed through transient elevations of cytosolic Ca(2+) that show different kinetics. Specificity of the Ca(2+) signature relies also on the precise structural characteristics of the OG molecules, such as the methylesterification of galacturonic acid residues and the steric conformation. Inhibition of the OG-induced Ca(2+) transient also blocks the oxidative burst, indicating that the cytosolic Ca(2+) increase is one of the earliest steps in OG-activated signalling. However, a phosphorylation event seems to precede the Ca(2+) rise, because the Ca(2+) transient could be abolished by the protein kinase inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). A pharmacological approach with different antagonists that interfere with the induction of the cytosolic Ca(2+) rise indicates that both extracellular Ca(2+) influx and intracellular Ca(2+) release participate in transducing the OG signal. Treatment of cells with OGs establishes a refractory state, which impairs the ability of the cell to respond to a second stimulus with the same elicitor for up to 16 h. This desensitization period could be prolonged with the phosphatase inhibitor okadaic acid, and eliminated with the protein kinase inhibitor Ro 31-8220, suggesting that phosphorylation events may be involved in the establishment of the cell refractory state.  相似文献   
88.
Target-derived NGF promotes the phenotypic maintenance of mature dorsal root ganglion (DRG) nociceptive neurons. Here, we provide in vivo and in vitro evidence for the presence within DRG neurons of endosomes containing NGF, activated TrkA, and signaling proteins of the Rap1/Erk1/2, p38MAPK, and PI3K/Akt pathways. Signaling endosomes were shown to be retrogradely transported in the isolated sciatic nerve in vitro. NGF injection in the peripheral target of DRG neurons increased the retrograde transport of p-Erk1/2, p-p38, and pAkt in these membranes. Conversely, NGF antibody injections decreased the retrograde transport of p-Erk1/2 and p-p38. Our results are evidence that signaling endosomes, with the characteristics of early endosomes, convey NGF signals from the target of nociceptive neurons to their cell bodies.  相似文献   
89.
Vitis rupestris is used as rootstock or to obtain hybrids with Vitis vinifera, due to its resistance to certain pathogens. Its resistance mechanisms are poorly understood, while it is known that stilbene neo‐synthesis is a central defense strategy in V. vinifera. In the present study, the response to methyl jasmonate (MeJa) and light treatment in terms of stilbene biosynthesis and the expression of genes involved in polyphenol biosynthesis was investigated in V. vinifera and V. rupestris cells. The two species exhibited a similar constitutive stilbene content [2.50–2.80 mg g?1 dry weight (DW)], which greatly increased in response to elicitation (8.97–11.90 mg g?1 DW). In V. vinifera, continuous light treatment amplified the effect of MeJa, with a stilbene production that had never previously been obtained (26.49 mg g?1 DW). By contrast, it suppressed the effect of MeJa in V. rupestris. Gene expression was consistent with stilbene production in V. vinifera, whereas discrepancies were recorded in V. rupestris that could be explained by the synthesis of stilbenes that had never before been analyzed in this species.  相似文献   
90.
Overactivation of glutamate receptors and subsequent deregulation of the intraneuronal calcium ([Ca2+]i) levels are critical components of the injurious pathways initiated by cerebral ischemia. Another hallmark of stroke is parenchymal acidosis, and we have previously shown that mild acidosis can act as a switch to decrease NMDAR-dependent neuronal loss while potentiating the neuronal loss mediated by AMPARs. Potentiation of AMPAR-mediated neuronal death in an acidotic environment was originally associated only with [Ca2+]i dyshomeostasis, as assessed by Ca2+ imaging; however, intracellular dyshomeostasis of another divalent cation, Zn2+, has recently emerged as another important co-factor in ischemic neuronal injury. Rises in [Zn2+]i greatly contribute to the fluorescent changes of Ca2+-sensitive fluorescent probes, which also have great affinity for Zn2+. We therefore revisited our original findings (Mcdonald et al., 1998) and investigated if AMPAR-mediated fura-2 signals we observed could also be partially due to [Zn2+]i increases. Fura-2 loaded neuronal cultures were exposed to the AMPAR agonist, kainate, in a physiological buffer at pH 7.4 and then washed either at pH 7.4 or pH 6.2. A delayed recovery of fura-2 signals was observed at both pHs. Interestingly this impaired recovery phase was found to be sensitive to chelation of intracellular Zn2+. Experiments with the Zn2+ sensitive (and Ca2+-insensitive) fluorescent probe FluoZin-3 confirmed the idea that AMPAR activation increases [Zn2+]i, a phenomenon that is potentiated by mild acidosis. Additionally, our results show that selective Ca2+ imaging mandates the use of intracellular heavy metal chelators to avoid confounding effects of endogenous metals such as Zn2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号