首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2318篇
  免费   300篇
  国内免费   1篇
  2619篇
  2023年   12篇
  2022年   29篇
  2021年   55篇
  2020年   45篇
  2019年   36篇
  2018年   54篇
  2017年   40篇
  2016年   80篇
  2015年   132篇
  2014年   124篇
  2013年   129篇
  2012年   132篇
  2011年   116篇
  2010年   79篇
  2009年   83篇
  2008年   91篇
  2007年   130篇
  2006年   96篇
  2005年   85篇
  2004年   71篇
  2003年   68篇
  2002年   89篇
  2001年   75篇
  2000年   65篇
  1999年   62篇
  1998年   27篇
  1997年   31篇
  1996年   20篇
  1995年   18篇
  1994年   27篇
  1993年   12篇
  1992年   53篇
  1991年   36篇
  1990年   36篇
  1989年   43篇
  1988年   20篇
  1987年   29篇
  1986年   27篇
  1985年   25篇
  1984年   37篇
  1983年   22篇
  1982年   25篇
  1981年   17篇
  1980年   9篇
  1979年   12篇
  1978年   19篇
  1977年   15篇
  1976年   9篇
  1975年   11篇
  1973年   14篇
排序方式: 共有2619条查询结果,搜索用时 17 毫秒
71.
Apoptosis comprises a critical intracellular defense mechanism against tumourigenic growth. We have been interested in the relationship between morphological changes and intracellular concentration of several cations after etoposide-induced apoptosis in androgen-independent prostate cancer cells. SEM and X-ray microanalysis were performed on freeze-dried PC3 cells after etoposide treatment, and correlated with the morphological features observed after examination by light and fluorescence microscopy. Cell viability assays were also performed. A significant decrease in intracellular Cl(-) and K(+)and a progressive increase in Mg(2+) and Na(+) were observed, with parallel changes in cellular volume as cells passed through three morphological stages of apoptosis. The use of EPXRMA made it possible to evaluate alterations in element composition in prostate cancer cell apoptosis and may be a helpful tool for further studies on apoptosis in prostate cancer.  相似文献   
72.
Plasma adiponectin level is significantly reduced in patients with metabolic syndrome, and vascular dysfunction is an important pathological event in these patients. However, whether adiponectin may protect endothelial cells and attenuate endothelial dysfunction caused by metabolic disorders remains largely unknown. Adult rats were fed with a regular or a high-fat diet for 14 wk. The aorta was isolated, and vascular segments were incubated with vehicle or the globular domain of adiponectin (gAd; 2 mug/ml) for 4 h. The effect of gAd on endothelial function, nitric oxide (NO) and superoxide production, nitrotyrosine formation, gp91(phox) expression, and endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) activity/expression was determined. Severe endothelial dysfunction (maximal vasorelaxation in response to ACh: 70.3 +/- 3.3 vs. 95.2 +/- 2.5% in control, P < 0.01) was observed in hyperlipidemic aortic segments, and treatment with gAd significantly improved endothelial function (P < 0.01). Paradoxically, total NO production was significantly increased in hyperlipidemic vessels, and treatment with gAd slightly reduced, rather than increased, total NO production in these vessels. Treatment with gAd reduced (-78%, P < 0.01) superoxide production and peroxynitrite formation in hyperlipidemic vascular segments. Moreover, a moderate attenuation (-30%, P < 0.05) in gp91(phox) and iNOS overexpression in hyperlipidemic vessels was observed after gAd incubation. Treatment with gAd had no effect on eNOS expression but significantly increased eNOS phosphorylation (P < 0.01). Most noticeably, treatment with gAd significantly enhanced eNOS (+83%) but reduced iNOS (-70%, P < 0.01) activity in hyperlipidemic vessels. Collectively, these results demonstrated that adiponectin protects the endothelium against hyperlipidemic injury by multiple mechanisms, including promoting eNOS activity, inhibiting iNOS activity, preserving bioactive NO, and attenuating oxidative/nitrative stress.  相似文献   
73.
74.
75.
This study explored the importance of using relevant measures when evaluating the effectiveness of early childhood interventions. Data from the federally-funded evaluation of the Comprehensive Child Development Program were used to examine whether the behavior measure, the Child Behavior Checklist (CBCL), was an appropriate tool for the diverse community-based sample of young, low-income children. Results demonstrated no confirmation of the CBCL syndromes composing the Externalizing and Internalizing behavioral dimensions used to determine program impacts. Exploratory analyses revealed that two-thirds of the clinical behavior problems included in the CBCL were of very low prevalence in this community-based sample. These findings stress the importance of measurement fit in national evaluations of early childhood programs serving these vulnerable children.  相似文献   
76.
RNA editing at the Q/R site near the apex of the pore loop of AMPA and kainate receptors controls a diverse array of channel properties, including ion selectivity and unitary conductance and susceptibility to inhibition by polyamines and cis-unsaturated fatty acids, as well as subunit assembly into tetramers and regulation by auxiliary subunits. How these different aspects of channel function are all determined by a single amino acid substitution remains poorly understood; however, several lines of evidence suggest that interaction between the pore helix (M2) and adjacent segments of the transmembrane inner (M3) and outer (M1) helices may be involved. In the present study, we have used double mutant cycle analysis to test for energetic coupling between the Q/R site residue and amino acid side chains along the M3 helix. Our results demonstrate interaction with several M3 locations and particularly strong coupling to substitution for L614 at the level of the central cavity. In this location, replacement with smaller side chains completely and selectively reverses the effect of fatty acids on gating of edited channels, converting strong inhibition of wild-type GluK2(R) to nearly 10-fold potentiation of GluK2(R) L614A.  相似文献   
77.

Background

Nonsteroidal anti-inflammatory drugs (NSAIDs) are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies.

Methodology/Principal Findings

The analogue of arachidonic acid (AA), 2-hydroxy-arachidonic acid (2OAA), was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production) activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method) and iNOS (Western blot) were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the –OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo.

Conclusion/Significance

These findings demonstrate the potential of 2OAA as a NSAID.  相似文献   
78.
It is generally accepted that preeclampsia results from reduction in perfusion to the uteroplacental unit leading to maternal hypertension and fetal growth restriction. Placental insufficiency creates an environment of fetal undernutriton, predisposing the fetus to the development of adult disease. In this study, we characterized the development and perpetuation of hypertension in two generations of male and female offspring subjected to an environment of fetal undernutrition via reduced uteroplacental perfusion pressure. Further, we examined vascular responses of resistance arteries in these animals to determine the influence of placental insufficiency on the development and perpetuation of hypertension. Experimental dams underwent a surgical procedure to reduce uteroplacental perfusion pressure, with resulting offspring comprising the first generation (F1). One male and one female from each of the F1 experimental litters served as breeders of the second generation (F2). Weekly systolic blood pressure measurements were obtained from 4 to 24 wk in control, F1, and F2 offspring. Vascular responsiveness to the vasoconstrictors phenylephrine and potassium chloride and the vasorelaxants acetylcholine and sodium nitroprusside was determined in the three offspring groups at 6, 9, and 12 wk of age. Our findings indicate that placental insufficiency during a critical developmental window in late gestation leads to hypertension in juvenile Sprague-Dawley rat offspring and is perpetuated in a second generation of offspring in a gender-specific manner. Further, exposure to placental insufficiency during late gestation leads to developmental alterations characterized by vascular hyperresponsiveness, perpetuated to a second generation of offspring in the absence of persistent environmental stimuli, contributing to hypertension.  相似文献   
79.
Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72. As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS‐FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre‐mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.  相似文献   
80.
Chemokines, in addition to their chemotactic properties, act upon resident cells within a tissue and mediate other cellular functions. In a previous study, we demonstrated that CCL2 protects cultured mouse neonatal cardiac myocytes from hypoxia-induced cell death. Leukocyte chemotaxis has been shown to contribute to ischemic injury. While the chemoattractant properties of CCL2 have been established, the protective effects of this chemokine suggest a novel role for CCL2 in myocardial ischemia/reperfusion injury. The present study examined the cellular signaling pathways that promote this protection. Treatment of cardiac myocyte cultures with CCL2 protected them from hypoxia-induced apoptosis. This protection was not mediated through the activation of G(alphai) signaling that mediates monocyte chemotaxis. Inhibition of the ERK1/2 signaling pathway abrogated CCL2 protection. Caspase 3 activation and JNK/SAPK phosphorylation were decreased in hypoxic myocytes co-treated with CCL2 as compared to hypoxia only-treated cultures. Expression of the Bcl-2 family proteins, Bcl-xL and Bag-1, was increased in CCL2-treated myocytes subjected to hypoxia. There was also downregulation of Bax protein levels as a result of CCL2 co-treatment. These data suggest that CCL2 cytoprotection and chemotaxis may occur through distinct signaling mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号