首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2321篇
  免费   300篇
  国内免费   2篇
  2023年   11篇
  2022年   20篇
  2021年   55篇
  2020年   45篇
  2019年   35篇
  2018年   54篇
  2017年   41篇
  2016年   80篇
  2015年   128篇
  2014年   122篇
  2013年   126篇
  2012年   128篇
  2011年   115篇
  2010年   81篇
  2009年   83篇
  2008年   92篇
  2007年   130篇
  2006年   98篇
  2005年   86篇
  2004年   70篇
  2003年   69篇
  2002年   88篇
  2001年   75篇
  2000年   65篇
  1999年   61篇
  1998年   26篇
  1997年   30篇
  1996年   20篇
  1995年   20篇
  1994年   27篇
  1993年   12篇
  1992年   53篇
  1991年   36篇
  1990年   36篇
  1989年   43篇
  1988年   20篇
  1987年   29篇
  1986年   28篇
  1985年   25篇
  1984年   37篇
  1983年   22篇
  1982年   25篇
  1981年   17篇
  1979年   12篇
  1978年   18篇
  1977年   15篇
  1975年   12篇
  1973年   14篇
  1952年   10篇
  1951年   11篇
排序方式: 共有2623条查询结果,搜索用时 15 毫秒
131.
Calreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co‐expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK‐STAT signalling, TPO‐independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR. Importantly, 4D7 inhibited proliferation of patient samples with both insertion and deletion CALR mutations but not JAK2 V617F and prolonged survival in xenografted bone marrow models of mutant CALR‐dependent myeloproliferation. Together, our data demonstrate a novel therapeutic approach to target a problematic disease driven by a recurrent somatic mutation that would normally be considered undruggable.  相似文献   
132.
The effectiveness of cysteine and cysteinylglycine to act as protein thiolating agents was investigated using bovine lens aldose reductase (ALR2) as the protein target. Disulfides of both thiol compounds appear to be very effective as ALR2 thiolating agents. Cysteine- and CysGly-modified ALR2 forms (Cys-ALR2 and CysGly-ALR2, respectively) are characterized by the presence of a mixed disulfide bond involving Cys298, as demonstrated by a combined electrospray mass spectrometry and Edman degradation approach. Both Cys-ALR2 and CysGly-ALR2 essentially retain the ability to reduce glyceraldehyde but lose the susceptibility to inhibition by Sorbinil and other ALR2 inhibitors. Cys-ALR2 and CysGly-ALR2 are easily reduced back to the native enzyme form by dithiothreitol and GSH treatment; on the contrary, Cys and 2-mercaptoethanol appear to act as protein trans-thiolating agents, rather than reducing agents. The treatment at 37 degrees C of both Cys-ALR2 and CysGly-ALR2, unlikely what observed for glutathionyl-modified ALR2 (GS-ALR2), promotes the generation of an intramolecular disulfide bond between Cys298 and Cys303 residues. A rationale for the special susceptibility of Cys-ALR2 and CysGly-ALR2, as compared to GS-ALR2, to the thermally induced intramolecular rearrangement is given on the basis of a molecular dynamic and energy minimization approach. A pathway of thiol/disulfide interconversion for bovine lens ALR2 induced, in oxidative conditions, by physiological thiol compounds is proposed.  相似文献   
133.
Cadmium is very toxic at low concentrations, but the basis for its toxicity is not clearly understood. We analyzed the proteomic response of yeast cells to acute cadmium stress and identified 54 induced and 43 repressed proteins. A striking result is the strong induction of 9 enzymes of the sulfur amino acid biosynthetic pathway. Accordingly, we observed that glutathione synthesis is strongly increased in response to cadmium treatment. Several proteins with antioxidant properties were also induced. The induction of nine proteins is dependent upon the transactivator Yap1p, consistent with the cadmium hypersensitive phenotype of the YAP1-disrupted strain. Most of these proteins are also overexpressed in a strain overexpressing Yap1p, a result that correlates with the cadmium hyper-resistant phenotype of this strain. Two of these Yap1p-dependent proteins, thioredoxin and thioredoxin reductase, play an important role in cadmium tolerance because strains lacking the corresponding genes are hypersensitive to this metal. Altogether, our data indicate that the two cellular thiol redox systems, glutathione and thioredoxin, are essential for cellular defense against cadmium.  相似文献   
134.
The Pacific Northwest (PNW), an important region for wheat production in the USA, is often subject to water deficits during sowing and grain filling. These deficits reduce the quality and yield of the crop. As a consequence, an important objective of breeding programs in the region is improving the genetic adaptation of wheat cultivars to drought stress. One response to dehydrative stresses is the accumulation of proteins called dehydrins, which are believed to protect membranes and macromolecules against denaturation. We characterized dehydrin accumulation in seedlings during drought stress and its correlation with stress tolerance during grain filling in seven wheat cultivars, 'Connie', 'Gene', 'TAM105', 'Rod', 'Hiller', 'Rhode', and 'Stephens'. A 24-kd dehydrin accumulated in seedlings under stress, but not in irrigated control plants. Connie, TAM105, and Gene started to accumulate dehydrins at the fourth day of stress, while the other cultivars showed dehydrins after twelve days of stress. This differential accumulation in seedlings was associated with stress tolerance at grain filling, characterized by a lower reduction in yield and in the rate of decrease in leaf water potential per day of stress. Connie, TAM105, Gene and Rod where the most tolerant cultivars. The results indicate that expression of this 24-kd dehydrin might serve as a rapid and non-destructive screening technique at the seedling stage. Even though the results are promising, selection experiments using a population segregating for stress tolerance are needed to test more conclusively whether this dehydrin can serve as a genetic marker for cultivars with tolerance to drought stress.  相似文献   
135.
136.
Reactive intermediates derived from nitric oxide ((*)NO) are thought to play a contributing role in disease states associated with inflammation and infection. We show here that glutathione S-transferases (GSTs), principal enzymes responsible for detoxification of endogenous and exogenous electrophiles, are susceptible to inactivation by reactive nitrogen species (RNS). Treatment of isolated GSTs or rat liver homogenates with either peroxynitrite, the myeloperoxidase/hydrogen peroxide/nitrite system, or tetranitromethane, resulted in loss of GST activity with a concomitant increase in the formation of protein-associated 3-nitrotyrosine (NO(2)Tyr). This inactivation was only partially (<25%) reversible by dithiothreitol, and exposure of GSTs to hydrogen peroxide or S-nitrosoglutathione was only partially inhibitory (<25%) and did not result in protein nitration. Thus, irreversible modifications such as tyrosine nitration may have contributed to GST inactivation by RNS. Since all GSTs contain a critical, highly conserved, active-site tyrosine residue, we postulated that this Tyr residue might present a primary target for nitration by RNS, thus leading to enzyme inactivation. To directly investigate this possibility, we analyzed purified mouse liver GST-mu, following nitration by several RNS, by trypsin digestion, HPLC separation, and matrix-assisted laser desorption/ionization-time of flight analysis, to determine the degree of tyrosine nitration of individual Tyr residues. Indeed, nitration was found to occur preferentially on several tyrosine residues located in and around the GST active site. However, RNS concentrations that resulted in near complete GST inactivation only caused up to 25% nitration of even preferentially targeted tyrosine residues. Hence, nitration of active-site tyrosine residues may contribute to GST inactivation by RNS, but is unlikely to fully account for enzyme inactivation. Overall, our studies illustrate a potential mechanism by which RNS may promote (oxidative) injury by environmental pollutants in association with inflammation.  相似文献   
137.
Lauf U  Lopez P  Falk MM 《FEBS letters》2001,498(1):11-15
A novel, brilliantly red fluorescent protein, DsRed has become available recently opening up a wide variety of experimental opportunities for double labeling and fluorescence resonance electron transfer experiments in combination with green fluorescent protein (GFP). Unlike in the case of GFP, proteins tagged with DsRed were often found to aggregate within the cell. Here we report a simple method that allows rescuing the function of an oligomeric protein tagged with DsRed. We demonstrate the feasibility of this approach on the subunit proteins of an oligomeric membrane channel, gap junction connexins. Additionally, DsRed fluorescence was easily detected 12-16 h post transfection, much earlier than previously reported, and could readily be differentiated from co-expressed GFP. Thus, this approach can eliminate the major drawbacks of this highly attractive autofluorescent protein.  相似文献   
138.
139.
Nitric oxide (NO) has been found to inhibit the actions of the transmembrane metal reductase Fre1 in the yeast Saccharomyces cerevisiae. This membrane-spanning heme protein is homologous to the gp91(PHOX) protein of the NADPH oxidase enzyme complex and is responsible for reducing extracellular oxidized metals (i.e., ferric and cupric ions) before high-affinity uptake. Consistent with its role in metal metabolism, inhibition of Fre1 by NO also inhibited yeast growth in low-iron medium. Inhibition by NO was found to be O(2)-dependent and irreversible. Further examination of the chemistry responsible for activity loss shows that the generation of N(2)O(3) via NO-O(2) chemistry was responsible for the activity loss, possibly via nitrosation of the protein followed by loss of the heme prosthetic group.  相似文献   
140.
Renin-expressing cells are peculiar in that they act as differentiated cells, producing the hormone renin, while they also seem to act as progenitors for other renal cell types. As such, they may have functions independent of their ability to generate renin/angiotensin. To test this hypothesis, we ablated renin-expressing cells during development by placing diphtheria toxin A chain (DTA) under control of the Ren1d mouse renin promoter by homologous recombination in a two-renin gene strain (Ren2 and Ren1d). Renin-expressing cells are essentially absent from kidneys in homozygotes (DTA/DTA) which, unlike wild-type mice, are unable to recruit renin-expressing cells when homeostasis is threatened. In contrast, renin staining in the submandibular gland (SMG), which expresses mainly Ren2, is normal. Homozygous mice survive normally, but the kidneys are small and have morphological abnormalities: 25% of the glomeruli are hyperplastic or atrophic, tubules are dilated and atrophic, and areas of undifferentiated cells exist near the atrophic glomeruli and tubules. However, in contrast to the very abnormal renal vessels found when renin-angiotensin system genes are deleted, the kidney vessels in homozygotes have normal wall thickness and no decrease in lumen size. Homozygotes have severely reduced kidney and plasma renin concentrations and females have reduced blood pressure. Homozygotes have elevated blood urea nitrogen and potassium levels, which are suggestive of altered renal function. We conclude that renin cells per se are necessary for the morphological integrity of the kidney and may have a role in maintenance of normal kidney function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号