首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2413篇
  免费   172篇
  2023年   22篇
  2022年   35篇
  2021年   69篇
  2020年   54篇
  2019年   62篇
  2018年   77篇
  2017年   85篇
  2016年   115篇
  2015年   141篇
  2014年   154篇
  2013年   172篇
  2012年   186篇
  2011年   193篇
  2010年   110篇
  2009年   96篇
  2008年   109篇
  2007年   112篇
  2006年   105篇
  2005年   81篇
  2004年   84篇
  2003年   72篇
  2002年   59篇
  2001年   51篇
  2000年   69篇
  1999年   45篇
  1998年   15篇
  1997年   16篇
  1996年   10篇
  1995年   14篇
  1994年   12篇
  1993年   9篇
  1992年   12篇
  1991年   11篇
  1990年   11篇
  1989年   13篇
  1988年   8篇
  1987年   9篇
  1986年   6篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1974年   7篇
  1973年   12篇
  1972年   3篇
  1970年   4篇
排序方式: 共有2585条查询结果,搜索用时 15 毫秒
91.
92.

Aims

Glutathione (GSH) plays an important role in protecting cells against oxidative damage. ABCC1 protein transports GSH. Although this protein is largely studied in cancer, due to multidrug resistance phenotype, its role in the tubular cells of the kidney is unknown. The goal of this study was to find out whether ABCC1 has a role in protecting cells from the distal nephron against the stress caused by high medullar osmolality.

Main Methods

MA104 cells were treated with high concentrations of sodium chloride, urea, or both to raise the osmolality of the culture medium. Cell viability was accessed by MTT and trypan blue assays. ABCC1 expression and extrusion of carboxi-fluorescein (CF), a fluorescent ABCC1 substrate, were measured by flow cytometry.

Key Findings

Incubation of MA104 cells in a high sodium concentration medium resulted in changes in cell granularity and altered expression and activity of ABCC1. Urea did not alter ABCC1 expression or activity, but reversed the observed NaCl effects. High sodium concentrations also had a negative effect on cell viability and urea also protected cells against this effect.

Significance

Our findings demonstrate that ABCC1 plays a significant role in the protection of kidney epithelial cells against the stress caused by high sodium environment present in renal medulla.  相似文献   
93.
94.
Sexual compatibility limits the production of cacao plantations, being an important selection criterion in breeding programs. However, the current method for characterizing compatibility, based on the frequency of flower setting after controlled pollination, is time consuming, requiring a long time to identify self-compatible individuals. The identification of molecular markers in genomic regions can be an alternative to allow early selection of self-compatible plants. The present study aimed to identify SNP markers associated with sexual compatibility in cacao, by utilizing genome-wide association (GWAS) mapping. A population of 295 individuals mostly from third-generation breeding populations, but also founder clones, was used. This population was phenotypically characterized by hand pollinating 8199 flowers and evaluating the flower retention 15 days after pollination. In addition, leaf samples of each individual were collected and DNA extracted for genotyping by sequencing, generating 5301 SNP markers after cleaning. Genome-wide association mapping analysis was performed using Synbreed, GCTA, and TASSEL softwares. Significant markers associated to incompatibility, likely in strong linkage disequilibrium, were found within a region of 196 kb, in the proximal end of chromosome 4, suggesting the existence of a major gene in that region. However, this result should be validated in a larger population, considering that only 295 trees were used here. When the SNP effects were treated as random in the estimation process, many other regions in the genome appears to be involved with sexual incompatibility in cacao. Candidate genes were found not only in the proximal end of chromosome 4 but also spread in several other regions of the genome.  相似文献   
95.
Candidemia is a growing problem in hospitals all over the world. Despite advances in the medical support of critically ill patients, candidiasis leads to prolonged hospitalization, and has a crude mortality rate around 50%. We conducted a multicenter surveillance study in 16 hospitals distributed across five regions of Brazil to assess the incidence, species distribution, antifungal susceptibility, and risk factors for bloodstream infections due to Candida species. From June 2007 to March 2010, we studied a total of 2,563 nosocomial bloodstream infection (nBSI) episodes. Candida spp. was the 7th most prevalent agent. Most of the patients were male, with a median age of 56 years. A total of 64 patients (46.7%) were in the ICU when candidemia occurred. Malignancies were the most common underlying condition (32%). The crude mortality rate of candidemia during the hospital admission was 72.2%. Non-albicans species of Candida accounted for 65.7% of the 137 yeast isolates. C. albicans (34.3%), Candida parapsilosis (24.1%), Candida tropicalis (15.3%) and Candida glabrata (10.2%) were the most prevalent species. Only 47 out of 137 Candida isolates were sent to the reference laboratory for antifungal susceptibility testing. All C. albicans, C. tropicalis and C. parapsilosis isolates were susceptible to the 5 antifungal drugs tested. Among 11 C. glabrata isolates, 36% were resistant to fluconazole, and 64% SDD. All of them were susceptible to anidulafungin and amphotericin B. We observed that C. glabrata is emerging as a major player among non-albicans Candida spp. and fluconazole resistance was primarily confined to C. glabrata and C. krusei strains. Candida resistance to echinocandins and amphotericin B remains rare in Brazil.Mortality rates remain increasingly higher than that observed in the Northern Hemisphere countries, emphasizing the need for improving local practices of clinical management of candidemia, including early diagnosis, source control and precise antifungal therapy.  相似文献   
96.

Background

Stacking cross-sectional intravascular images permits three-dimensional rendering of endovascular implants, yet introduces between-frame uncertainties that limit characterization of device placement and the hemodynamic microenvironment. In a porcine coronary stent model, we demonstrate enhanced OCT reconstruction with preservation of between-frame features through fusion with angiography and a priori knowledge of stent design.

Methods and Results

Strut positions were extracted from sequential OCT frames. Reconstruction with standard interpolation generated discontinuous stent structures. By computationally constraining interpolation to known stent skeletons fitted to 3D ‘clouds’ of OCT-Angio-derived struts, implant anatomy was resolved, accurately rendering features from implant diameter and curvature (n = 1 vessels, r2 = 0.91, 0.90, respectively) to individual strut-wall configurations (average displacement error ~15 μm). This framework facilitated hemodynamic simulation (n = 1 vessel), showing the critical importance of accurate anatomic rendering in characterizing both quantitative and basic qualitative flow patterns. Discontinuities with standard approaches systematically introduced noise and bias, poorly capturing regional flow effects. In contrast, the enhanced method preserved multi-scale (local strut to regional stent) flow interactions, demonstrating the impact of regional contexts in defining the hemodynamic consequence of local deployment errors.

Conclusion

Fusion of planar angiography and knowledge of device design permits enhanced OCT image analysis of in situ tissue-device interactions. Given emerging interests in simulation-derived hemodynamic assessment as surrogate measures of biological risk, such fused modalities offer a new window into patient-specific implant environments.  相似文献   
97.
98.
Caatinga vegetation continues to be converted into mosaics of secondary forest stands, but the affect of this process on biodiversity has not yet been examined. We used 35 regenerating and old‐growth stands of Caatinga to examine the recovery of plant assemblages subsequent to slash‐and‐burn agriculture and cattle ranching/pasture in northeastern Brazil. Plant assemblages were contrasted in terms of community structure (stem density/basal area/species richness/diversity), functional (leaf habit/reproductive traits) and taxonomic composition. Soil attributes were also examined to infer potential drivers for cross‐habitat differences. As expected, plant assemblages clearly differed across a large set of community‐level attributes, including all trait categories relative to leaf habit and reproduction (pollination syndrome/floral color, size, type). Overall, old‐growth forest stands supported distinct and more diverse assemblages at the plot and habitat level; e.g., long‐lived tree species were almost exclusively found in old‐growth forest stands. For most attributes, plant assemblages subsequent to pasture exhibited intermediate values between those exhibited by old‐growth forest and those of agriculture‐related stands. Surprisingly, soils exhibited similar fertility‐related scores across habitats. Our results indicate that: (1) sprouting/resprouting represents an important mechanism of forest regeneration; (2) assemblage‐level attributes suggest recovery at distinct rates; (3) forest regeneration implies community‐level changes in both vegetative and reproductive functional attributes, including directional changes; (4) Caatinga is not able to completely recover in a period of 15‐yr following land abandonment; and (5) historical land use affects recovery rates and successional pathways/taxonomic trajectories. Seasonally dry tropical forests may intrinsically cover a wide range of patterns relative to successional model, recovery rates and successional pathways.  相似文献   
99.
100.
Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30–35, and 50–55 of the stability program. At generations 0 and 30–35, LC gene expression level was higher than HC gene, whereas at generation 50–55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号