首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   24篇
  311篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   16篇
  2013年   8篇
  2012年   20篇
  2011年   19篇
  2010年   11篇
  2009年   9篇
  2008年   6篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   10篇
  2000年   7篇
  1999年   4篇
  1998年   2篇
  1997年   7篇
  1996年   4篇
  1994年   9篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   7篇
  1989年   9篇
  1988年   6篇
  1987年   5篇
  1985年   2篇
  1984年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1974年   5篇
  1973年   3篇
  1972年   4篇
  1970年   2篇
  1967年   2篇
  1941年   2篇
  1932年   2篇
排序方式: 共有311条查询结果,搜索用时 0 毫秒
301.
302.
303.
Bovine cumulus oocyte complexes (COCs) as used for in vitro maturation and fertilization can be classified into different categories by light microscopical inspection. We have distinguished four categories based on compactness and transparency of the cumulus investment and homogeneity and transparency of the ooplasm. The four categories were studied for their morphological characteristics at the ultrastructural level and for their developing capacity in an in vitro maturation system. In categories 1 and 2 oocytes, organelles were evenly distributed. In categories 3 and 4, oocytes organelles were clustered and the distribution of the organelles mimicked the characteristics of oocytes during final maturation. Cumulus cell process endings penetrated the cortex of the oocyte or were located superficial to the cortex of the oocyte. In category 1 oocytes, most of the process endings penetrated the cortex. In category 4 oocytes, most of the process endings did not penetrate. In categories 2 and 3 oocytes, both forms of process endings did occur. After in vitro maturation, only category 4 oocytes showed a decreased developing capacity. Categories 1–3 oocytes showed equal developing capacity in an in vitro maturation system.  相似文献   
304.
305.
306.
307.
Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions. Our analysis of more than 900 paired fungal–bacterial metabolic models predicted key gut bacterial species modulating C. albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can significantly affect potentially harmful levels of C. albicans.Subject terms: Fungi, Infectious diseases, Metagenomics, Gastrointestinal diseases, Microbiome  相似文献   
308.
Abstract The enzyme glucose-fructose oxidoreductase (GFOR) from the Gram-negative ethanologenic bacterium Zymomonas mobilis was purified to homogeneity and was shown to be a tetrameric protein with a subunit size of M r 42 500. Using immunogold-labelling in combination with electron microscopy, ultrathin sections of Z. mobilis wild type cells showed that the enzyme GFOR is located in the periplasm off the bacterial cells. Z. mobilis strains which carried the cloned gfo gene on plasmid pSUP104, had 5–6-fold increased GFOR enzyme activities. Moreover, these cells accumulated large amounts of a presumable unprocessed pre-GFOR protein ( M r 48 000).  相似文献   
309.
310.
ABSTRACT

Macroautophagy (which we will call autophagy hereafter) is a critical intracellular bulk degradation system that is active at basal rates in eukaryotic cells. This process is embedded in the homeostasis of nutrient availability and cellular metabolic demands, degrading primarily long-lived proteins and specific organelles.. Autophagy is perturbed in many pathologies, and its manipulation to enhance or inhibit this pathway therapeutically has received considerable attention. Although better probes are being developed for a more precise readout of autophagic activity in vitro and increasingly in vivo, many questions remain. These center in particular around the accurate measurement of autophagic flux and its translation from the in vitro to the in vivo environment as well as its clinical application. In this review, we highlight key aspects that appear to contribute to stumbling blocks on the road toward clinical translation and discuss points of departure for reaching some of the desired goals. We discuss techniques that are well aligned with achieving desirable spatiotemporal resolution to gather data on autophagic flux in a multi-scale fashion, to better apply the existing tools that are based on single-cell analysis and to use them in the living organism. We assess how current techniques may be used for the establishment of autophagic flux standards or reference points and consider strategies for a conceptual approach on titrating autophagy inducers based on their effect on autophagic flux . Finally, we discuss potential solutions for inherent controls for autophagy analysis, so as to better discern systemic and tissue-specific autophagic flux in future clinical applications.

Abbreviations: GFP: Green fluorescent protein; J: Flux; MAP1LC3/LC3: Microtubule-associated protein 1 light chain 3; nA: Number of autophagosomes; TEM: Transmission electron microscopy; τ: Transition time  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号