首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有58条查询结果,搜索用时 46 毫秒
21.
The tyrosine decarboxylase operon of Lactobacillus brevis IOEB9809 contains, adjacent to the tyrosine decarboxylase gene, a gene for TyrP, a putative tyrosine transporter. The two genes potentially form a proton motive tyrosine decarboxylation pathway. The putative tyrosine transporter gene of L. brevis was expressed in Lactococcus lactis and functionally characterized using right-side-out membranes. The transporter very efficiently catalyzes homologous tyrosine-tyrosine exchange and heterologous exchange between tyrosine and its decarboxylation product tyramine. Tyrosine-tyramine exchange was shown to be electrogenic. In addition to the exchange mode, the transporter catalyzes tyrosine uniport but at a much lower rate. Analysis of the substrate specificity of the transporter by use of a set of 19 different tyrosine substrate analogues showed that the main interactions between the protein and the substrates involve the amino group and the phenyl ring with the para hydroxyl group. The carboxylate group that is removed in the decarboxylation reaction does not seem to contribute to the affinity of the protein for the substrates significantly. The properties of the TyrP protein are those typical for precursor-product exchangers that operate in proton motive decarboxylation pathways. It is proposed that tyrosine decarboxylation in L. brevis results in proton motive force generation by an indirect proton pumping mechanism.  相似文献   
22.
Lactic acid bacteria contribute to wine transformation during malolactic fermentation. They generally improve the sensorial properties of wine, but some strains produce histamine, a toxic substance that causes health issues. Histamine-producing strains belong to species of the genera Oenococcus, Lactobacillus, and Pediococcus. All carry an hdcA gene coding for a histidine decarboxylase that converts histidine into histamine. For this study, a method based on quantitative PCR and targeting hdcA was developed to enumerate these bacteria in wine. This method was efficient for determining populations of 1 to 107 CFU per ml. An analysis of 264 samples collected from 116 wineries of the same region during malolactic fermentation revealed that these bacteria were present in almost all wines and at important levels, exceeding 103 CFU per ml in 70% of the samples. Histamine occurred at an often important level in wines containing populations of the above-mentioned bacteria. Fifty-four colonies of histamine producers isolated from four wines were characterized at the genetic level. All were strains of Oenococcus oeni that grouped into eight strain types by randomly amplified polymorphic DNA analysis. Some strains were isolated from wines collected in distant wineries. Moreover, hdcA was detected on a large and possibly unstable plasmid in these strains of O. oeni. Taken together, the results suggest that the risk of histamine production exists in almost all wines and is important when the population of histamine-producing bacteria exceeds 103 per ml. Strains of O. oeni producing histamine are frequent in wine during malolactic fermentation, but they may lose this capacity during subcultures in the laboratory.  相似文献   
23.
Aims: To investigate the action of different polyphenolic compounds, extracted from red wine, grape marc and pine bark, on oral bacteria. Methods and Results: The anti-microbial activity of extracts was examined by determining the Minimal Inhibitory Concentration and Minimal Bactericidal Concentration using the macro dilution broth technique. Their effect on the adherence was tested on growing cells of Streptococcus mutans on a glass surface and on a multi-species biofilm grown on saliva-coated hydroxyapatite discs. The effect on glucosyltransferase activity was analysed through the reductions in the overall reaction rate and the quantity of insoluble glucan (ISG) synthesized. Pine bark and grape marc extracts were the most effective inhibitors of the multi-species biofilm formation and of the ISG synthesis. Conclusion: The tested components showed an interesting anti-plaque activity in vitro. Significance and Impact of the Study: This is, to our knowledge, the first and the most complete report on the properties of wine and pine bark extracts that could be used for oral disease prevention purpose.  相似文献   
24.
Lactic acid bacteria in the quality improvement and depreciation of wine   总被引:36,自引:0,他引:36  
The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 106CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteri a, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet c ompletely elucidated . Molecular biology has provided some explanations for the behaviour and the metabolism of bacteria in wine. New tools are now available to detect the presence of desirable and undesirable strains. Even if much remains unknown, winemakers and oenologists can nowadays better control the process. By acting upon the diverse microflora and grape musts, they are more able to produce healthy and pleasant wines.  相似文献   
25.
AIMS: Brettanomyces bruxellensis is a well-known wine spoilage yeast that causes undesirable off-flavours. Likewise, glucan-producing strains of ropy Pediococcus damnosus are considered as spoilage micro-organisms because the synthesis of glucan leads to an unacceptable viscosity of wine. METHODS AND RESULTS: We developed a real-time PCR method to detect and quantify these two spoilage micro-organisms in wine. It is based on specific primer pairs for amplification of target DNA, and includes a melting-curve analysis of PCR products as a confirmatory test. CONCLUSIONS: The detection limit in wine was 10(4) CFU ml(-1) for B. bruxellensis and 40 CFU ml(-1) for ropy Pediococcus damnosus. The real-time PCR proved to be reliable for the early, sensitive detection and quantification of B. bruxellensis and ropy P. damnosus in wine. SIGNIFICANCE AND IMPACT OF THE STUDY: The real-time PCR-based method described in this study provides a new tool for monitoring spoilage micro-organisms in wine. Time-consuming culture and colony isolation steps are no longer needed, so winemakers can intervene before spoilage occurs.  相似文献   
26.
Oenococcus oeni is the main lactic acid bacteria species which induces malolactic fermentation during wine-making. It is able to break down arginine via the arginine deiminase pathway, a potential source of energy already considered for many bacteria. The production of ATP by starved cells from arginine was quantified with a bioluminescence assay, and efficient coupling of amino acid catabolism and cell growth was monitored. Therefore, molecular growth yield was determined after glucose exhaustion. With colony plate counting and a direct epifluorescence technique, it was shown that addition of arginine to viable but non-culturable cells obtained after nutrient starvation restored their ability to grow during its degradation. Therefore, arginine produced more than maintenance energy. It is concluded that strains which are able to metabolize arginine might take advantage of this additional energy source for growth.  相似文献   
27.
The wine bacterium Oenococcus oeni has to cope with harsh environmental conditions, including an acidic pH, a high alcoholic content, nonoptimal growth temperatures, and growth-inhibitory compounds such as fatty acids, phenolic acids, and tannins. We describe the characterization and cloning of the O. oeni ftsH gene, encoding a protease belonging to the ATP binding cassette protein superfamily. The O. oeni FtsH protein is closest in sequence similarity to the FtsH homologue of Lactococcus lactis. The O. oeni ftsH gene proved to be stress-responsive, since its expression increased at high temperatures or under osmotic shock. O. oeni FtsH protein function was tested in an Escherichia coli ftsH mutant strain, and consistent with the O. oeni ftsH gene expression pattern, the O. oeni FtsH protein provided protection for the E. coli ftsH mutant against heat shock. O. oeni and Bradyrhizobium japonicum FtsH proteins also triggered E. coli resistance to wine toxicity. Genes homologous to O. oeni ftsH were detected in many other lactic acid bacteria found in wine, suggesting that this type of gene constitutes a well-conserved stress-protective molecular device.  相似文献   
28.
29.
Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol.  相似文献   
30.
Aims:  Brettanomyces / Dekkera bruxellensis is a particularly troublesome wine spoilage yeast. This work was aimed at characterizing its behaviour in terms of growth and volatile compound production in red wine.
Methods and Results:  Sterile red wines were inoculated with 5 × 103 viable cells ml−1 of three B. bruxellensis strains and growth and volatile phenol production were followed for 1 month by means of plate counts and gas chromatography-mass spectrometry (GC-MS) respectively. Maximum population levels generally attained 106–107 colony forming units (CFU) ml−1 and volatile phenol concentrations ranged from 500 to 4000 μg l−1. Brettanomyces bruxellensis multiplication was also accompanied by the production of organic acids (from C2 to C10), short chain acid ethyl-esters and the 'mousy off-flavour' component 2-acetyl-tetrahydropyridine.
Conclusions:  Different kinds of 'Brett character' characterized by distinct metabolic and sensory profiles can arise in wine depending on the contaminating strain, wine pH and sugar content and the winemaking stage at which contamination occurs.
Significance and Impact of the Study:  We identified new chemical markers that indicate wine defects caused by B. bruxellensis. Further insight was provided into the role of some environmental conditions in promoting wine spoilage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号