首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   30篇
  293篇
  2023年   2篇
  2022年   3篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   11篇
  2015年   4篇
  2014年   12篇
  2013年   19篇
  2012年   15篇
  2011年   25篇
  2010年   12篇
  2009年   15篇
  2008年   11篇
  2007年   16篇
  2006年   13篇
  2005年   11篇
  2004年   5篇
  2003年   10篇
  2002年   14篇
  2001年   7篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
41.
42.
Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.  相似文献   
43.
The range of value-added chemicals produced by Escherichia coli from simple sugars has been expanded to include xylitol. This was accomplished by screening the in vivo activity of a number of heterologous xylitol-producing enzymes. Xylose reductases from Candida boidinii (CbXR), Candida tenuis (CtXR), Pichia stipitis (PsXR), and Saccharmoyces cerivisiae (ScXR), and xylitol dehydrogenases from Gluconobacter oxydans (GoXDH) and Pichia stipitis (PsXDH) were all functional in E. coli to varying extents. Replacement of E. coli's native cyclic AMP receptor protein (CRP) with a cyclic AMP-independent mutant (CRP*) facilitated xylose uptake and xylitol production from mixtures of glucose and xylose, with glucose serving as the growth substrate and source of reducing equivalents. Of the enzymes tested, overexpression of NADPH-dependent CbXR produced the highest concentrations of xylitol in shake-flask cultures (approximately 275 mM in LB cultures, approximately 180 mM using minimal medium). Expression of CbXR in strain PC09 (crp*, DeltaxylB) in a 10-L controlled fermentation containing minimal medium resulted in production of approximately 250 mM xylitol (38 g/L), with concomitant utilization of approximately 150 mM glucose. The ratio of moles xylitol produced (from xylose) per mole glucose consumed was improved to > 3.7:1 using metabolically active "resting" cells.  相似文献   
44.
Efficient gene delivery is a fundamental goal of biotechnology and has numerous applications in both basic and applied science. Substrate-mediated delivery and reverse transfection enhance gene transfer by increasing the concentration of DNA in the cellular microenvironment through immobilizing a plasmid to a cell culture substrate prior to cell seeding. In this report, we examine gene delivery of plasmids that were complexed with cationic polymers (polyplexes) or lipids (lipoplexes) and subsequently immobilized to cell culture or biomaterial substrates by adsorption. Polyplexes and lipoplexes were adsorbed to either tissue culture polystyrene or serum-adsorbed tissue culture polystyrene. The quantity of DNA immobilized increased with time of exposure, and the deposition rate and final amount deposited depended upon the properties of the substrate and complex. For polyplexes, serum modification enhanced reporter gene expression up to 1500-fold relative to unmodified substrates and yielded equivalent or greater expression compared to bolus delivery. For lipoplexes, serum modification significantly increased the number of transfected cells relative to unmodified substrates yet provided similar levels of expression. Immobilized complexes transfect primary cells with improved cellular viability relative to bolus delivery. Finally, this substrate-mediated delivery approach was extended to a widely used biomaterial, poly(lactide-co-glycolide). Immobilization of DNA complexes to tissue culture polystyrene substrates can be a useful tool for enhancing gene delivery for in vitro studies. Additionally, adapting this system to biomaterials may facilitate application to fields such as tissue engineering.  相似文献   
45.
46.
The importance of the initial follicle pool in fertility in female adult mammals has recently been debated. Utilizing a mathematical model of the dynamics of follicle progression (primordial to primary to secondary), we examined whether the initial follicle pool is sufficient for adult fertility through reproductive senescence in CD1 mice. Follicles in each stage were counted from postnatal day 6 through 12 months and data were fit to a series of first-order differential equations representing two mechanisms: an initial pool of primordial follicles as the only follicle source (fixed pool model), or an initial primordial follicle pool supplemented by germline stem cells (stem cell model). The fixed pool model fit the experimental data, accurately representing the maximum observed primary follicle number reached by 4-6 months of age. Although no germline stem cells could be identified by SSEA-1 immunostaining, the stem cell model was tested using a range of de novo primordial follicle production rates. The stem cell model failed to describe the observed decreases in follicles over time and did not parallel the accumulation and subsequent reduction in primary follicles during the early fertile lifespan of the mouse. Our results agree with established dogma that the initial endowment of ovarian follicles is not supplemented by an appreciable number of stem cells; rather, it is sufficient to ensure the fertility needs of the adult mouse.  相似文献   
47.
Replacing fossil fuels with renewable fuels derived from lignocellulosic biomass can contribute to the mitigation of global warming and the economic development of rural communities. This will require lignocellulosic biofuels to become price competitive with fossil fuels. Techno-economic analyses can provide insights into which parts of the biofuel production process need to be optimized to reduce cost or energy use. We used data obtained from a pilot biorefinery to model a commercial-scale biorefinery that processes lignocellulosic biomass to ethanol, with a focus on the minimum ethanol selling price (MESP). The process utilizes a phosphoric acid-catalyzed pre-treatment of sweet sorghum bagasse followed by liquefaction and simultaneous saccharification and co-fermentation (L+SScF) of hexose and pentose sugars by an engineered Escherichia coli strain. After validating a techno-economic model developed with the SuperPro Designer software for the conversion of sugarcane bagasse to ethanol by comparing it to a published Aspen Plus model, six different scenarios were modeled for sweet sorghum bagasse Under the most optimistic scenario, the ethanol can be produced at a cost close to the energy-equivalent price of gasoline. Aside from an increase in the price of gasoline, the gap between ethanol and gasoline prices could also be bridged by either a decrease in the cost of cellulolytic enzymes or development of value-added products from lignin.  相似文献   
48.
Spermatogenesis is a complex process in which spermatogonial stem cells divide and subsequently differentiate into spermatozoa. This process requires spermatogonial stem cells to self-renew and provide a continual population of cells for differentiation. Studies on spermatogonial stem cells have been limited due to a lack of unique markers and an inability to detect the presence of these cells. The technique of germ cell transplantation provides a functional assay to identify spermatogonial stem cells in a cell population. We hypothesized that vitamin A-deficient (VAD) and hyperthermically treated testes would provide an enriched in vivo source of spermatogonial stem cells. The first model, hyperthermic treatment, depends on the sensitivity of maturing germ cells to high temperatures. Testes of adult mice were exposed to 43 degrees C for 15 min to eliminate the majority of differentiating germ cells. Treated donor testes were 50% of normal adult testis size and, when transplanted into recipients, resulted in a 5.3- and 19-fold (colonies and area, respectively) increase in colonization efficiency compared to controls. The second model, VAD animals, also lacked differentiating germ cells, and testes weights were 25% of control values. Colonization efficiency of germ cells from VAD testes resulted in a 2.5- and 6.2-fold (colonies and area, respectively) increase in colonization compared to controls. Hyperthermically treated mice represent an enriched source of spermatogonial stem cells. In contrast, the low extent of colonization with germ cells from VAD animals raises important questions regarding the competency of stem cells from this model.  相似文献   
49.
50.
The esterified and unesterified sterol fractions of bee-gathered mixed pollens were examined, and total sterol composition was determined. Two new sterols of pollens, 14α-methyl-9β,19-cyclo-5α-cholest-24-en-3β-ol (24-dehydropollinastanol) and 14α-methyl-5α-ergost-24(28)-en-3β-ol (24-methylenepollinastanol) were isolated and identified. Both sterols were found primarily in the esterified sterol fraction, and 24-methylenepollinastanol accounted for 43% of the sterols of this fraction. 24-Dehydropollinastanol and four other sterols which also contain a 9β,19-cyclopropane ring were found only in the esterified sterol fraction. 24-Methylenecholesterol was the major sterol of the unesterified sterol fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号