首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16815篇
  免费   1929篇
  国内免费   1802篇
  20546篇
  2024年   55篇
  2023年   200篇
  2022年   459篇
  2021年   708篇
  2020年   553篇
  2019年   729篇
  2018年   645篇
  2017年   579篇
  2016年   681篇
  2015年   974篇
  2014年   1175篇
  2013年   1319篇
  2012年   1523篇
  2011年   1387篇
  2010年   955篇
  2009年   808篇
  2008年   987篇
  2007年   893篇
  2006年   760篇
  2005年   684篇
  2004年   618篇
  2003年   611篇
  2002年   603篇
  2001年   352篇
  2000年   310篇
  1999年   273篇
  1998年   181篇
  1997年   131篇
  1996年   121篇
  1995年   89篇
  1994年   102篇
  1993年   61篇
  1992年   69篇
  1991年   87篇
  1990年   69篇
  1989年   68篇
  1988年   45篇
  1987年   52篇
  1986年   54篇
  1985年   42篇
  1984年   50篇
  1983年   43篇
  1982年   35篇
  1979年   27篇
  1977年   21篇
  1976年   25篇
  1975年   21篇
  1974年   26篇
  1973年   29篇
  1971年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
李龙  王亮  温阿敏  闫世伟  姚晓军 《生态学报》2021,41(24):9932-9940
明晰甘肃安西极旱荒漠国家级自然保护区珍稀濒危物种北山羊的分布格局,并阐释气候变化和人类活动对北山羊的影响,对今后北山羊生境管理和物种保护具有重要意义。基于北山羊实测分布点记录和环境变量数据,结合MaxEnt模型和ArcGIS空间分析功能,利用CMIP6的8个气候模式均值预测中度发展路径(SSP2-4.5)下,基准期(1970-2000年)和未来气候(2041-2060年、2081-2100年)变化情景下,甘肃安西极旱荒漠国家级自然保护区北山羊的潜在适生区分布范围及变化,并综合贡献率和置换重要性值对北山羊生境选择关键环境因子进行了分析。研究结果表明:(1) MaxEnt模型的预测精度较高,三种气候条件下ROC曲线下面积(AUC,Area Under Curve)>0.97,且真实技巧统计(TSS,True Skill Statistic)>0.90,模拟结果可靠。(2)影响北山羊生境选择的主要环境因子为气候条件(降水量季节性变异系数和等温性)、海拔和人为干扰(距泉和居名点距离)。水是保护区北山羊生存的最基本要素,气候条件共同控制北山羊生境条件。此外,北山羊习性决定其生境宜选择高海拔和远离人类活动影响地区。(3)基准期保护区北山羊主要分布在北片和南片高海拔山区,面积365.77 km2(占整个保护区的4.31%),北山羊适生区面积北片>南片、中高等适生区主要位于保护区北片。(4) CMIP6未来气候变化情景下,随着保护区生态环境改善和濒危物种保护措施的实施,北山羊潜在适生区面积呈增加趋势,但是受北山羊近亲繁殖的影响,整体上北山羊数量和适生区面积增加并不显著且有向南部及高海拔地区转移趋势。  相似文献   
992.
采用RT-PCR技术克隆中国野生毛葡萄‘丹凤-2’芪合成酶基因,命名为VqDSTS1,并进行序列及表达模式分析.结果表明:VqDSTS1基因cDNA编码区全长为1 179bp,GenBank登录号为JQ342086,编码392个氨基酸;氨基酸序列分析表明,VqDSTS1含有芪合成酶基因家簇的特征识别序列‘IPNSAGAIAGN’和‘GVLFGFG-PGLT’;序列比对显示,VqDSTS1与其他葡萄种质的芪合成酶氨基酸序列一致性在95.2%~98.7%之间;半定量RT-PCR分析表明,VqDSTS1受白粉病诱导表达,呈双峰模式.为进一步研究中国野生毛葡萄‘丹凤-2’芪合成酶基因家族的表达及功能分析提供了基础.  相似文献   
993.
Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the L-citrulline/nitric oxide (NO·) salvage pathway to continually supply L-arginine from L-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/- mice (Ass+/+ mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/- mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/- compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration.  相似文献   
994.
In aquatic ecosystems, physical disturbances have been suggested to be one of the main factors influencing phytoplankton structure and diversity. To elucidate whether large-scale artificial operation of a hydroelectric reservoir has potential impacts on phytoplankton diversity, the impact on phytoplankton biodiversity of physical disturbances under artificial operation from May 2007 to April 2008 in tributaries of the Three Gorges Reservoir (TGR), China, was analysed. Two disturbance parameters, i.e. the absolute incremental rates of discharge (R d,i ) and precipitation (R p,i ), were created in this study for evaluating physical disturbance intensities during low and high water level periods of the TGR. Results showed that river discharge seemed to be the main factor controlling the phytoplankton diversity in low water level periods (≤151 m), and that precipitation was a potential promoter of the physical disturbance. During the 156-m impoundment process, the species diversity clearly decreased due to the high dilution effect on the phytoplankton communities. At high water level periods (>151 m), the low levels of disturbance eventually allowed the phytoplankton community to approach competitive exclusion in late February 2008. Sharply declining diversity values appeared when the Dinophyta blooms occurred in late March and late April 2008 (Peridinium and Ceratium, respectively).  相似文献   
995.
Isochrysis galbana, a marine prymnesiophyte microalga, is able to produce a high level of long chain polyunsaturated fatty acids such as docosahexaenoic acid (DHA, C22:6n-3). In this article, a novel gene (IgASE2) that encoded a C18-Δ9 polyunsaturase fatty acids specific (C18-Δ9-PUFAs-specific) elongase was isolated and characterized from DHA-rich microalga, I. galbana H29. A full-length cDNA of 1653 bp was cloned by rapidamplification of cDNA ends (RACE) PCR techniques. The IgASE2 contained a 786 bp ORF encoding a protein of 261 amino acids that shared 87% identity with the reported Δ9-elongase IgASE1, a 44 bp 5′ untranslated region and an 823 bp 3′ untranslated region. The function of IgASE2 was demonstrated by its heterologous expression in Saccharomyces cerevisiae. In S. cerevisiae, IgASE2 elongated linoleic acid (LA, C18:2n-6), α-linolenic (ALA, C18:3n-3) to eicosadienoic acid (EDA, C20:2n-6) and eicosatrienoic acid (ETrA, C20:3n-3). The conversion ratios of LA to EDA and ALA to ETrA were 60.47 and 58.36%, respectively. However, IgASE2 could not catalyze the elongation reactions of oleic acid (OA, C18:1n-9) and other fatty acids. These results confirmed that IgASE2 had C18-Δ9-PUFAs-specific elongase activity.  相似文献   
996.
Nonfullerene polymer solar cells (PSCs) based on polymer donors and nonfullerene small molecular acceptors (SMAs) have recently attracted considerable attention. Although much of the progress is driven by the development of novel SMAs, the donor polymer also plays an important role in achieving efficient nonfullerene PSCs. However, it is far from clear how the polymer donor choice influences the morphology and performance of the SMAs and the nonfullerene blends. In addition, it is challenging to carry out quantitative analysis of the morphology of polymer:SMA blends, due to the low material contrast and overlapping scattering features of the π–π stacking between the two organic components. Here, a series of nonfullerene blends is studied based on ITIC‐Th blended with five different donor polymers. Through quantitative morphology analysis, the (010) coherence length of the SMA is characterized and a positive correlation between the coherence length of the SMA and the device fill factor (FF) is established. The study reveals that the donor polymer can significantly change the molecular ordering of the SMA and thus improve the electron mobility and domain purity of the blend, which has an overall positive effect that leads to the enhanced device FF for nonfullerene PSCs.  相似文献   
997.
Within the past 5?years, tremendous advances have been made to maximize the performance of microbial fuel cells (MFCs) for both “clean” bioenergy production and bioremediation. Most research efforts have focused on parameters including (i) optimizing reactor configuration, (ii) electrode construction, (iii) addition of redox-active, electron donating mediators, (iv) biofilm acclimation and feed nutrient adjustment, as well as (v) other parameters that contribute to enhanced MFC performance. To date, tremendous advances have been made, but further improvements are needed for MFCs to be economically practical. In this review, the diversity of electrogenic microorganisms and microbial community changes in mixed cultures are discussed. More importantly, different approaches including chemical/genetic modifications and gene regulation of exoelectrogens, synthetic biology approaches and bacterial community cooperation are reviewed. Advances in recent years in metagenomics and microbiomes have allowed researchers to improve bacterial electrogenicity of robust biofilms in MFCs using novel, unconventional approaches. Taken together, this review provides some important and timely information to researchers who are examining additional means to enhance power production of MFCs.  相似文献   
998.

Background

A stent in a false lumen is a common cause of stent occlusion after coronary percutaneous coronary artery intervention therapy, particularly in the culprit lesion of acute myocardial infarction. Here, we present an unusual case of successful recanalization of the proximal right coronary artery with implementation of another stent to crush the previous stent in the false lumen.

Case presentation

A 40-year-old Chinese man underwent coronary stent implementation in the proximal right coronary artery due to acute inferior wall myocardial infarction at another hospital. Six months later, he underwent coronary angiography re-examination for recurrent symptomatic angina at our hospital. Coronary angiography and intravascular ultrasound confirmed that the previous stent was deployed in the false lumen of the right coronary artery. Then, intravascular ultrasound was used to guide the wire to re-enter the true lumen of the proximal right coronary artery, and another stent was deployed into the true lumen to crush the previous stent.

Conclusion

Intravascular ultrasound proved to be a pivotal tool in confirming false or true lumen, as well as determining favorable proximal site entry points to avoid rewiring the mesh of the previous stent.
  相似文献   
999.
Summary This paper is concerned with the divergence of synonymous codon usage and its bias in three homologous genes within vertebrate species. Genetic distances among species are described in terms of synonymous codon usage divergence and the correlation is found between the genetic distances and taxonomic distances among species under study. A codon usage clock is reported in alphaglobin and beta-globin. A method is developed to define the synonymous codon preference bias and it is observed that the bias changes considerably among species.  相似文献   
1000.
Lin Cheng  Ming Cui 《Fly》2018,12(1):41-45
Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme. Telomere studies in Drosophila will continue to yield fundamental insights that are instrumental to the understanding of the evolution of telomere and telomeric functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号