首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   40篇
  2023年   2篇
  2022年   5篇
  2021年   13篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   19篇
  2014年   28篇
  2013年   30篇
  2012年   36篇
  2011年   31篇
  2010年   19篇
  2009年   27篇
  2008年   21篇
  2007年   27篇
  2006年   34篇
  2005年   28篇
  2004年   27篇
  2003年   21篇
  2002年   27篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有492条查询结果,搜索用时 15 毫秒
21.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
22.
Flavobacterium psychrophilum is a fish pathogen in salmonid aquaculture worldwide that causes cold water disease (CWD) and rainbow trout fry syndrome (RTFS). Comparative genome analyses of 11 F. psychrophilum isolates representing temporally and geographically distant populations were used to describe the F. psychrophilum pan-genome and to examine virulence factors, prophages, CRISPR arrays, and genomic islands present in the genomes. Analysis of the genomic DNA sequences were complemented with selected phenotypic characteristics of the strains. The pan genome analysis showed that F. psychrophilum could hold at least 3373 genes, while the core genome contained 1743 genes. On average, 67 new genes were detected for every new genome added to the analysis, indicating that F. psychrophilum possesses an open pan genome. The putative virulence factors were equally distributed among isolates, independent of geographic location, year of isolation and source of isolates. Only one prophage-related sequence was found which corresponded to the previously described prophage 6H, and appeared in 5 out of 11 isolates. CRISPR array analysis revealed two different loci with dissimilar spacer content, which only matched one sequence in the database, the temperate bacteriophage 6H. Genomic Islands (GIs) were identified in F. psychrophilum isolates 950106-1/1 and CSF 259–93, associated with toxins and antibiotic resistance. Finally, phenotypic characterization revealed a high degree of similarity among the strains with respect to biofilm formation and secretion of extracellular enzymes. Global scale dispersion of virulence factors in the genomes and the abilities for biofilm formation, hemolytic activity and secretion of extracellular enzymes among the strains suggested that F. psychrophilum isolates have a similar mode of action on adhesion, colonization and destruction of fish tissues across large spatial and temporal scales of occurrence. Overall, the genomic characterization and phenotypic properties may provide new insights to the mechanisms of pathogenicity in F. psychrophilum.  相似文献   
23.
Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.  相似文献   
24.
The production of pentabromopseudilin and related brominated compounds by Pseudoalteromonas spp. has recently been linked to the bmp biosynthetic gene cluster. This study explored the distribution and evolutionary history of this gene cluster in the genus Pseudoalteromonas. A phylogeny of the genus revealed numerous clades that do not contain type strains, suggesting considerable species level diversity has yet to be described. Comparative genomics revealed four distinct versions of the gene cluster distributed among 19 of the 101 Pseudoalteromonas genomes examined. These were largely localized to the least inclusive clades containing the Pseudoalteromonas luteoviolacea and Pseudoalteromonas phenolica type strains and show clear evidence of gene and gene cluster loss in certain lineages. Bmp gene phylogeny is largely congruent with the Pseudoalteromonas species phylogeny, suggesting vertical inheritance within the genus. However, the gene cluster is found in three different genomic environments suggesting either chromosomal rearrangement or multiple acquisition events. Bmp conservation within certain lineages suggests the encoded products are highly relevant to the ecology of these bacteria.  相似文献   
25.
Didymocarpus pedicellata R. Br. (Gesneriaceae) is widely used in traditional Indian medicines against renal afflictions. In the present study, we have revealed ethanolic extract of aerial parts of D. pedicellata to possess significant antioxidant activity and protect against ferric nitrilotriacetate (Fe-NTA) mediated renal oxidative stress, nephrotoxicity and tumor promotion response. D. pedicellata extract was found to possess a high content of total polyphenolics, exhibit potent reducing power and significantly scavenge free radicals including several reactive oxygen species (ROS) and reactive nitrogen species (RNS). The extract also significantly and dose-dependently protected against Fe-NTA plus H(2)O(2)-mediated damage to lipids and DNA. Protective efficacy of the extract was also tested in vivo against Fe-NTA mediated nephrotoxicity and tumor promotion response. Administration of Fe-NTA (9 mg/kg body weight, i.p.) to Swiss albino mice depleted renal glutathione content and activities of antioxidant and phase II metabolizing enzymes with concomitant induction of oxidative damage. Fe-NTA also incited hyperproliferation response elevating ornithine decarboxylase activity and [(3)H]-thymidine incorporation into DNA. Elevation in serum creatinine (SCr) and blood urea nitrogen (BUN), and histopathological changes were also evident and suggested Fe-NTA to afflict damage to kidney. Pretreatment of mice with D. pedicellata extract (100-200 mg/kg body weight) for 7 days not only restored antioxidant armory near normal values but also significantly protected against renal oxidative stress and damage restoring normal renal architecture and levels of renal damage markers, viz., BUN and SCr. The results of the present study indicate D. pedicellata to possess potent antioxidant and free radical scavenging activities and preclude oxidative damage and hyperproliferation in renal tissues.  相似文献   
26.
In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D -xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies. Subsequently, the stability of the docked inhibitors was envisioned by molecular dynamics simulations, principle component analysis, and molecular mechanics-Poisson-Boltzmann surface area-based free binding energy calculations. The stability assessment of the hits was done by comparing with the reference (beta-substituted fosmidomycin analog, LC5) to prioritize more potent candidates. All the complexes showed stable dynamic behavior while three of them displayed higher binding free energy compared with the reference. The work resulted in the identification of the compounds with diverse scaffolds, which could be used as initial leads for the design of novel PfDXR inhibitors.  相似文献   
27.
Postharvest losses of cut flowers is one of the considerable challenges restricting their efficient marketability. Consequently, such challenges have triggered a constant hunt for developing compatible postharvest treatments to mitigate postharvest losses. Interestingly, recent studies entrench extensive role of salicylic acid (SA) in mitigating postharvest losses in various flower systems. The current investigation focusses on role of SA in augmenting physiological and biochemical responses to mitigate postharvest senescence in cut spikes of Consolida ajacis. The cut spikes of C. ajacis were supplemented with various SA treatments viz, 2 mM, 4 mM, 6 mM. The effects of these treatments were evaluated against control set of spikes placed in distilled water. Our study indicates considerable increment in postharvest longevity of cut spikes, besides an increase in solution uptake, sugar and protein content of tepal tissues.SA augmented antioxidant system via upsurge in phenolic content and antioxidant enzymes viz, superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) to forfend reactive oxygen species (ROS) related oxidative damage. SA profoundly reduced lipoxygenase (LOX) activity to preserve the membrane integrity and thus prevented seepage of solutes from tepal tissues. These results authenticate SA particularly 4 mM concentration as effective postharvest treatment to preserve the postharvest quality of C. ajacis cut spikes.  相似文献   
28.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6-9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6-9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   
29.
The Salmonella effector protein SigD is an inositol phosphate phosphatase that inhibits phosphatidylinositol 3-kinase-dependent signaling. Because epidermal growth factor (EGF) inhibits chloride secretion via phosphatidylinositol 3-kinase, we explored whether Salmonella infection might modify the inhibitory effect of EGF. As expected, EGF inhibited chloride secretion induced by carbachol in T84 epithelial cells. Infection with wild-type (WT) but not sigD mutant S. typhimurium SL1344 decreased CCh-stimulated chloride secretion. Moreover, WT but not sigD Salmonella reduced the inhibitory effect of EGF on carbachol-stimulated chloride secretion. Complementation of sigD restored the ability of mutant Salmonella to reverse the inhibitory effect of EGF. EGF-induced EGF receptor phosphorylation was similar in cells infected with either WT or mutant Salmonella, and neither WT nor sigD Salmonella altered recruitment of the p85 subunit of phosphatidylinositol 3-kinase to EGF receptor, implying that SigD acts downstream of these signaling events. Furthermore, transepithelial resistance fell more rapidly in cells infected with WT vs. sigD Salmonella, indicating an early role for SigD in reducing barrier function, perhaps via activation of protein kinase C. We conclude that the Salmonella bacterial effector protein SigD may play critical roles in the pathogenesis of disease caused by this microorganism. chloride secretion; Salmonella typhimurium; epidermal growth factor  相似文献   
30.
A novel antimicrobial enzyme system, the Curvularia haloperoxidase system, was examined with the aim of elucidating its mechanism of antibacterial action. Escherichia coli strain MG1655 was stressed with sublethal concentrations of the enzyme system, causing a temporary arrest of growth. The expression of genes altered upon exposure to the Curvularia haloperoxidase system was analyzed by using DNA microarrays. Only a limited number of genes were involved in the response to the Curvularia haloperoxidase system. Among the induced genes were the ibpA and ibpB genes encoding small heat shock proteins, a gene cluster of six genes (b0301-b0306) of unknown function, and finally, cpxP, a member of the Cpx pathway. Knockout mutants were constructed with deletions in b0301-b0306, cpxP, and cpxARP, respectively. Only the mutant lacking cpxARP was significantly more sensitive to the enzyme system than was the wild type. Our results demonstrate that DNA microarray technology cannot be used as the only technique to investigate the mechanisms of action of new antimicrobial compounds. However, by combining DNA microarray analysis with the subsequent creation of knockout mutants, we were able to pinpoint one of the specific responses of E. coli--namely, the Cpx pathway, which is important for managing the stress response from the Curvularia haloperoxidase system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号