首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1257篇
  免费   173篇
  2022年   10篇
  2021年   19篇
  2019年   9篇
  2018年   9篇
  2017年   15篇
  2016年   23篇
  2015年   37篇
  2014年   49篇
  2013年   50篇
  2012年   68篇
  2011年   63篇
  2010年   36篇
  2009年   45篇
  2008年   40篇
  2007年   53篇
  2006年   67篇
  2005年   60篇
  2004年   67篇
  2003年   44篇
  2002年   46篇
  2001年   37篇
  2000年   25篇
  1999年   42篇
  1998年   16篇
  1997年   11篇
  1994年   15篇
  1993年   12篇
  1992年   16篇
  1991年   23篇
  1990年   23篇
  1989年   19篇
  1988年   17篇
  1987年   27篇
  1986年   17篇
  1984年   14篇
  1983年   10篇
  1982年   16篇
  1980年   13篇
  1979年   19篇
  1978年   9篇
  1977年   12篇
  1976年   9篇
  1974年   9篇
  1973年   13篇
  1972年   11篇
  1971年   13篇
  1970年   15篇
  1969年   13篇
  1967年   14篇
  1966年   8篇
排序方式: 共有1430条查询结果,搜索用时 108 毫秒
131.
Bile acid epimers and side-chain homologues are present in the human colon. To test whether such bile acids possess secretory activity, cultured T84 colonic epithelial cells were used to quantify the secretory properties of synthetic epimers and homologues of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). In our study, chloride secretion was measured as changes in short-circuit current (DeltaI(sc), in microA/cm2) with the use of voltage-clamped monolayers of T84 cells mounted in Ussing chambers. Bile acids were added at 0.5 mM, a concentration that did not alter transepithelial resistance. Data were expressed as peak DeltaI(sc) (means +/- SD). When added bilaterally, DCA stimulated a DeltaI(sc) response of 15.7 +/- 12.5 microA/cm2. The 12beta-OH epimer of DCA was less potent (DeltaI(sc) = 8.0 +/- 1.7 microA/cm2), whereas its 3beta-OH epimer had no effect. CDCA stimulated secretion (DeltaI(sc) = 8.2 +/- 5.5 microA/cm2), whereas both its 7beta-OH and 3beta-OH epimers were inactive, as was lithocholic acid. HomoDCA (1 additional side-chain carbon) was active (DeltaI(sc) = 7.8 +/- 4.8 microA/cm2), whereas norDCA (1 fewer carbon) and dinorDCA (2 fewer carbons) were not. Taurine conjugates of DCA and CDCA stimulated secretion (DeltaI(sc) = 12.3 +/- 7.5 and 8.8 +/- 4.8 microA/cm2, respectively) from the basolateral side but not the apical side. Uptake of taurine conjugates from the basolateral but not the apical side was shown by mass spectrometry. These studies indicate marked structural specificity for bile acid-induced chloride secretion and show that modification of bile acid structure by colonic bacteria modulates the secretory properties of these endogenous secretagogues.  相似文献   
132.
133.
Human DNA polymerase kappa (Pol kappa) is a proficient extender of mispaired primer termini on undamaged DNAs and is implicated in the extension step of lesion bypass. We present here the structure of Pol kappa catalytic core in ternary complex with DNA and an incoming nucleotide. The structure reveals encirclement of the DNA by a unique "N-clasp" at the N terminus of Pol kappa, which augments the conventional right-handed grip on the DNA by the palm, fingers, and thumb domains and the PAD and provides additional thermodynamic stability. The structure also reveals an active-site cleft that is constrained by the close apposition of the N-clasp and the fingers domain, and therefore can accommodate only a single Watson-Crick base pair. Together, DNA encirclement and other structural features help explain Pol kappa's ability to extend mismatches and to promote replication through various minor groove DNA lesions, by extending from the nucleotide incorporated opposite the lesion by another polymerase.  相似文献   
134.
Josefsen L  Bohn L  Sørensen MB  Rasmussen SK 《Gene》2007,397(1-2):114-125
OsIpk and HvIpk, inositol phosphate kinases, were cloned from rice (Oryza sativa L. var. indica, IR64) and barley (Hordeum vulgare) respectively. Sequence alignment showed that they belong to the ATP-grasp family, which includes inositol 1,3,4-trisphosphate 5/6-kinase from humans and Arabidopsis. Residues that are binding sites for ATP and coordinate magnesium in absence or presence of inositol phosphate are conserved and in total 23 residues are invariant among the twelve aligned inositol phosphate kinases. The genes were heterologously expressed in Escherichia coli and kinase activity assays with 17 different isomers of inositol mono-/di-/tri-/tetra-/pentaphosphate as well as phytate were performed. The strongest activity for both kinases was observed with Ins(3,4,5,6)P(4), which candidates as the primary substrate for these kinases in plants. Several species-specific differences between the two recombinant Ipks were observed. Rice OsIpk showed detectable kinase activity towards eight different substrates, whereas barley HvIpk showed kinase activity with all the substrates including inositol mono- and bisphosphates. HvIpk showed 3-kinase activity towards the Ins(1,4,5)P(3) substrate and it also interconverted the two substrates Ins(1,3,4,5)P(4) and Ins(1,3,4,6)P(4) by isomerase activity, which was not observed for the rice homologue. Both OsIpk and HvIpk had no detectable 2-kinase activity. Furthermore, the two Ipks showed phosphatase activity towards several inositol phosphates. Expression analysis by RT-PCR demonstrated that the Ipk gene was equally expressed in different tissues and developmental stages. Taken together, these results show that the Ipk kinase plays a significant role in the inositol phosphate interacting network in plants.  相似文献   
135.
A key assumption underlying any management practice implemented to aid wildlife conservation is that it will have similar effects on target species across the range it is applied. However, this basic assumption is rarely tested. We show that predictors [nearly all associated with agri-environment scheme (AES) options known to affect European birds] had similar effects for 11 bird species on sites with differing farming practice (pastoral vs. mixed farming) or which differed in the density at which the species was found. However, predictors from sites in one geographical region tended to have different effects in other areas suggesting that AES options targeted at a regional scale are more likely to yield beneficial results for farmland birds than options applied uniformly in national schemes. Our study has broad implications for designing conservation strategies at an appropriate scale, which we discuss.  相似文献   
136.
137.
138.
139.
In 2050, which aspects of ecosystem change will we regret not having measured? Long‐term monitoring plays a crucial part in managing Australia's natural environment because time is a key factor underpinning changes in ecosystems. It is critical to start measuring key attributes of ecosystems – and the human and natural process affecting them – now, so that we can track the trajectory of change over time. This will facilitate informed choices about how to manage ecological changes (including interventions where they are required) and promote better understanding by 2050 of how particular ecosystems have been shaped over time. There will be considerable value in building on existing long‐term monitoring programmes because this can add significantly to the temporal depth of information. The economic and social processes driving change in ecosystems are not identical in all ecosystems, so much of what is monitored (and the means by which it is monitored) will most likely target specific ecosystems or groups of ecosystems. To best understand the effects of ecosystem‐specific threats and drivers, monitoring also will need to address the economic and social factors underpinning ecosystem‐specific change. Therefore, robust assessments of the state of Australia's environment will be best achieved by reporting on the ecological performance of a representative sample of ecosystems over time. Political, policy and financial support to implement appropriate ecosystem‐specific monitoring is a perennial problem. We suggest that the value of ecological monitoring will be demonstrable, when plot‐based monitoring data make a unique and crucial contribution to Australia's ability to produce environmental accounts, environmental reports (e.g. the State of the Environment, State of the Forests) and to fulfilling reporting obligations under international agreements, such as the Convention on Biological Diversity. This paper suggests what must be done to meet Australia's ecological information needs by 2050.  相似文献   
140.
Proper assembly of the kinetochore, a multi-protein complex that mediates attachment of centromere DNA to spindle microtubules on each chromosome, is required for faithful chromosome segregation. Each previously characterized member of the Mis12/Mtw1 protein family is part of an essential subcomplex in the kinetochore. In this work, we identify and characterize CaMTW1, which encodes the homologue of the human Mis12 protein in the pathogenic budding yeast Candida albicans. Subcellular localization and chromatin immunoprecipitation assays confirmed CaMtw1 is a kinetochore protein. CaMtw1 is essential for viability. CaMtw1-depleted cells and cells in which CaMtw1 was inactivated with a temperature-sensitive mutation had reduced viability, accumulated at the G2/M stage of the cell cycle, and exhibited increased chromosome missegregation. CaMtw1 depletion also affected spindle length and alignment. Interestingly, in C. albicans, CaMtw1 and the centromeric histone, CaCse4, influence each other for kinetochore localization. In addition, CaMtw1 is required for efficient kinetochore recruitment of another inner kinetochore protein, the CENP-C homologue, CaMif2. Mis12/Mtw1 proteins have well-established roles in the recruitment and maintenance of outer kinetochore proteins. We propose that Mis12/Mtw1 proteins also have important co-dependent interactions with inner kinetochore proteins and that these interactions may increase the fidelity of kinetochore formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号