首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2275篇
  免费   199篇
  2474篇
  2022年   19篇
  2021年   37篇
  2020年   14篇
  2019年   22篇
  2018年   24篇
  2017年   31篇
  2016年   56篇
  2015年   78篇
  2014年   98篇
  2013年   113篇
  2012年   124篇
  2011年   137篇
  2010年   71篇
  2009年   82篇
  2008年   105篇
  2007年   104篇
  2006年   90篇
  2005年   86篇
  2004年   93篇
  2003年   75篇
  2002年   86篇
  2001年   50篇
  2000年   49篇
  1999年   47篇
  1998年   24篇
  1997年   37篇
  1996年   23篇
  1995年   28篇
  1994年   29篇
  1993年   31篇
  1992年   49篇
  1991年   36篇
  1990年   41篇
  1989年   28篇
  1988年   30篇
  1987年   42篇
  1986年   24篇
  1985年   34篇
  1984年   31篇
  1983年   18篇
  1982年   21篇
  1981年   15篇
  1979年   15篇
  1978年   19篇
  1977年   19篇
  1976年   18篇
  1975年   20篇
  1974年   19篇
  1973年   19篇
  1972年   18篇
排序方式: 共有2474条查询结果,搜索用时 0 毫秒
11.
A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could generate a subpopulation of V. cholerae that continues to produce TCP and CT in the rice water stools of cholera patients.  相似文献   
12.
Chemical compounds are highly important in the ecology of animals. In social insects, compounds on the body surface represent a particularly interesting trait, because they comprise different compound classes that are involved in different functions, such as communication, recognition and protection, all of which can be differentially affected by evolutionary processes. Here, we investigate the widely unknown and possibly antagonistic influence of phylogenetic and environmental factors on the composition of the cuticular chemistry of tropical stingless bees. We chose stingless bees because some species are unique in expressing not only self-produced compounds, but also compounds that are taken up from the environment. By relating the cuticular chemistry of 40 bee species from all over the world to their molecular phylogeny and geographical occurrence, we found that distribution patterns of different groups of compounds were differentially affected by genetic relatedness and biogeography. The ability to acquire environmental compounds was, for example, highly correlated with the bees'' phylogeny and predominated in evolutionarily derived species. Owing to the presence of environmentally derived compounds, those species further expressed a higher chemical and thus functional diversity. In Old World species, chemical similarity of both environmentally derived and self-produced compounds was particularly high among sympatric species, even when they were less related to each other than to allopatric species, revealing a strong environmental effect even on largely genetically determined compounds. Thus, our findings do not only reveal an unexpectedly strong influence of the environment on the cuticular chemistry of stingless bees, but also demonstrate that even within one morphological trait (an insect''s cuticular profile), different components (compound classes) can be differentially affected by different drivers (relatedness and biogeography), depending on the functional context.  相似文献   
13.
The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the Nα-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable change in the membrane partitioning properties of MPX and it was found that the shorter acylation with PA gave improved affinity and selectivity toward negatively charged membranes, whereas OA decreased the selectivity. Based on these findings, we hypothesize that minor differences in the embedding and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other, more potent antimicrobial peptides in future studies.  相似文献   
14.
The 39-kDa receptor-associated protein (RAP) is an intracellular glycoprotein that interacts with hitherto unknown sites in several members of the low-density-lipoprotein receptor gene family. Upon binding to these receptors, RAP inhibits all ligand interactions with the receptors. In the present study, the transglutaminase-catalyzed incorporation of radioactively labeled putrescine and a dansylated glutamine-containing peptide into human RAP has been studied. The results indicate the presence of both glutamine and lysine residues in RAP, accessible for transglutaminase cross-linking. Moreover, enzymatic digestion followed by sequence analysis of radiolabeled fractions demonstrated that Gln261 acts as the amine acceptor site. This residue is located in the third domain of RAP and is conserved among the RAP interspecies homologues. Insertion of a reporter group into the protein could prove useful to assess ligand/receptor interactions.  相似文献   
15.
16.
The objectives of this field project were to test relationships between the physiological and population status of indigenous fish and (a) ecological factors (habitat quality, food resources), (b) toxicological factors (ambient and tissue metal concentrations), and (c) metal detoxification factors (metallothionein induction and subcellular metal partitioning). The sentinel species, yellow perch (YP: Perca flavescens), was collected from lakes with contrasting metal levels located on the Canadian Precambrian Shield, downwind and downstream from metal smelters. In lakes at the high end of our exposure gradient, metals (Cu, Ni, and especially Cd) accumulate in YP to concentrations well above background tissue values; increases in tissue Zn concentrations were much more modest, despite the existence of a very marked gradient in ambient [Zn]. Metal accumulation in YP is accompanied by metallothionein induction, but all evidence to date suggests that metal detoxification by metallothionein is incomplete. Indeed, direct effects of metal toxicity are detected at multiple levels of biological organization, from effects at the cellular level, to effects in organs and tissues, to individuals and populations, in a pattern linked to accumulated metal concentrations (i.e., along the contamination gradient). In addition to direct or physiological effects, we also documented indirect, food-web-mediated effects of metals on YP in the most contaminated lakes. The most common indication of such indirect effects on YP is severely stunted growth coupled with a high degree of zooplankton dependence throughout their life.  相似文献   
17.
Both human and rat erythrocytes respond to low doses (10(-11)--10(-9) M) of L-isoproterenol and L-epinephrine with an increased degree of hypotonic hemolysis and a decreased rate of filtration through standardized paper filters. The receptors in both cell types have many of the characteristics of beta-receptors for catecholamines. However, hormone-receptor interaction in the human cell does not lead to an increase in intracellular cyclic AMP concentration, but in the rat cell, hormone-receptor interaction does lead to a significant increase in cyclic AMP content. Thus, catecholamine-beta-receptor interaction, at least in the human red cell, leads to a change in red cell properties which are not mediated by adenylate cyclase activation. Likewise, prostaglandin E2, at 10(-12)--10(-10) M, causes are increased degree of hypotonic hemolysis and a decreased rate of filtration through standardized paper filters, but it also does not increase the cycliC AMP content of the human erythrocyte but does increase that of the rat erythrocyte. Nevertheless, exogenous cyclic AMP, when added at a concentration of 10(-8) M to washed human erythrocytes, increases the degree of hypotonic hemolysis. Conversely, prostaglandin E1, at 10(-12)--10(-10) M, causes a decreased degree of hypotonic hemolysis and an increased rate of filtration through a standard filter. Both prostaglandin E2 and the catecholamines decrease the size of a rapidly exchangeable calcium pool, and prostaglandin E1 increases it.  相似文献   
18.
19.
It previously has been demonstrated that synthesis of the periplasmic maltose-binding protein (MBP) and alkaline phosphatase (AP) of Eschericha coli predominantly occurs on membrane-bound polysomes. In this study, signal sequence alterations that adversely affect export of MBP and AP, resulting in their cytoplasmic accumulation as unprocessed precursors, were investigated to determine whether they have an effect on the intracellular site of synthesis of these proteins. Our findings indicate that export-defective MBP and AP are not synthesized or are synthesized in greatly reduced levels on membrane-bound polysomes. In some instances, a concomitant increase in the amount of these proteins synthesized on free polysomes was clearly discerned. We also determined the site of synthesis of MBP and AP in strains harboring mutations thought to alter the cellular secretion machinery. It was found that the presence of a prlA suppressor allele partially restored synthesis of export-defective MBP on membrane-bound polysomes. On the other hand, the absence of a functional SecA protein resulted in the synthesis of wild-type MBP and AP predominantly on free polysomes.  相似文献   
20.
Pluripotent cells of the blastocyst inner cell mass (ICM) and their in vitro derivatives, embryonic stem (ES) cells, contain genomes in an epigenetic state that are poised for subsequent differentiation. Their chromatin is hyperdynamic in nature and relatively uncondensed. In addition, a large number of genes are expressed at low levels in both ICM and ES cells. Also, the chromatin of naturally pluripotent cells contains specialized histone modification patterns such as bivalent domains, which mark genes destined for later developmentally-regulated expression states. Female pluripotent cells contain X chromosomes that have yet to undergo the process of X chromosome inactivation. Collectively, these features of very early embyronic chromatin are required for the successful specification and production of differentiated cell lineages. Artificial reprogramming methods such as somatic nuclear transfer (SCNT), ES cell fusion-mediated reprogramming (FMR), and induced pluripotency (iPS) yield pluripotent cells that recapitulate many features of naturally pluripotent cells, including many of their epigenetic features. However, the route to pluripotent epigenomic states in artificial pluripotent cells differs drastically from that of their natural counterparts. Here, we compare and contrast the differing routes to pluripotency under natural and artificial conditions. In addition, we discuss the intrinsically metastable nature of the pluripotent epigenome and consider epigenetic aspects of reprogramming that may lead to incomplete or inaccurate reprogrammed states. Artificial methods of reprogramming hold immense promise for the development of autologous cell graft sources and for the development of cell culture models for human genetic disorders. However, the utility of artificially reprogrammed cells is highly dependent on the fidelity of the reprogramming process and it is therefore critically important to assess the epigenetic similarities between embryonic and induced pluripotent stem cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号