首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   61篇
  国内免费   1篇
  2021年   5篇
  2019年   5篇
  2018年   5篇
  2016年   5篇
  2015年   15篇
  2014年   11篇
  2013年   17篇
  2012年   22篇
  2011年   25篇
  2010年   14篇
  2009年   15篇
  2008年   22篇
  2007年   25篇
  2006年   20篇
  2005年   20篇
  2004年   23篇
  2003年   17篇
  2002年   14篇
  2001年   13篇
  2000年   19篇
  1999年   13篇
  1997年   5篇
  1996年   5篇
  1995年   11篇
  1994年   7篇
  1993年   8篇
  1992年   12篇
  1991年   5篇
  1990年   24篇
  1989年   20篇
  1988年   19篇
  1987年   16篇
  1986年   16篇
  1985年   15篇
  1984年   16篇
  1983年   13篇
  1982年   10篇
  1981年   5篇
  1979年   11篇
  1978年   9篇
  1975年   5篇
  1974年   12篇
  1973年   12篇
  1972年   9篇
  1971年   8篇
  1970年   5篇
  1969年   7篇
  1968年   6篇
  1967年   8篇
  1966年   4篇
排序方式: 共有663条查询结果,搜索用时 15 毫秒
161.
162.
163.
Orai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca2+-depletion sensor STIM1. This is followed by a fast Ca2+·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown. Here, we report the crystal structure of a CaM·Orai1-CMBD complex showing one CMBD bound to the C-terminal lobe of CaM, differing from other CaM-target protein complexes, in which both N- and C-terminal lobes of CaM (CaM-N and CaM-C) are involved in target binding. Orai1-CMBD binds CaM-C mainly through hydrophobic interactions, primarily involving residue Trp76 of Orai1-CMBD, which interacts with the hydrophobic pocket of CaM-C. However, NMR data, isothermal titration calorimetry data, and pulldown assays indicated that CaM-N and CaM-C both can bind Orai1-CMBD, with CaM-N having ∼4 times weaker affinity than CaM-C. Pulldown assays of a Orai1-CMBD(W76E) mutant, gel filtration chromatography data, and NOE signals indicated that CaM-N and CaM-C can each bind one Orai1-CMBD. Thus our studies support an unusual, extended 1:2 binding mode of CaM to Orai1-CMBDs, and quantify the affinity of Orai1 for CaM. We propose a two-step mechanism for CaM-dependent Orai1 inactivation initiated by binding of the C-lobe of CaM to the CMBD of one Orai1 followed by the binding of the N-lobe of CaM to the CMBD of a neighboring Orai1.  相似文献   
164.
The epsilon subunit of Escherichia coli DNA polymerase III possesses 3'-exonucleolytic proofreading activity. Within the Pol III core, epsilon is tightly bound between the alpha subunit (DNA polymerase) and subunit. Here, we present the crystal structure of epsilon in complex with HOT, the bacteriophage P1-encoded homolog of , at 2.1 A resolution. The epsilon-HOT interface is defined by two areas of contact: an interaction of the previously unstructured N terminus of HOT with an edge of the epsilon central beta-sheet as well as interactions between HOT and the catalytically important helix alpha1-loop-helix alpha2 motif of epsilon. This structure provides insight into how HOT and, by implication, may stabilize the epsilon subunit, thus promoting efficient proofreading during chromosomal replication.  相似文献   
165.
Regions of both colicin Ia and diphtheria toxin N-terminal to the channel-forming domains can be translocated across planar phospholipid bilayer membranes. In this article we show that the translocation pathway of diphtheria toxin allows much larger molecules to be translocated than does the translocation pathway of colicin Ia. In particular, the folded A chain of diphtheria toxin is readily translocated by that toxin but is not translocated by colicin Ia. This difference cannot be attributed to specific recognition of the A chain by diphtheria toxin's translocation pathway because the translocation pathway also accommodates folded myoglobin.  相似文献   
166.
To increase our understanding about the potential risks of chemically-induced aneuploidy, more information about the various mechanisms of aneuploidy induction is needed, particularly in germ cells. Most chemicals that induce aneuploidy inhibit microtubule polymerization. However, taxol alters microtubule dynamics by enhancing polymerization and stabilizing the polymer fraction. We tested the hypothesis that taxol induces meiotic delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Super-ovulated ICR mice received 0 (control), 2.5, 5.0, and 7.5 mg/kg taxol intraperitoneally immediately after HCG. Females were paired (1:1) with males for 17 h after taxol treatment. Mated females were given colchicine 25 h after taxol and their one-cell zygotes were collected 16 h later. Ovulated oocytes from non-mated females were collected 17 h after taxol. Chromosomes were C-banded for cytogenetic analyses. Oocytes were also collected from another group of similarly treated females for in situ chromatin and microtubule analyses. Taxol significantly (p<0.01) enhanced the proportion of oocytes exhibiting parthenogenetic activation, chromosomes displaced from the meiotic spindle, and sister-chromatid separation. Moreover, 7.5 mg/kg taxol significantly (p<0.01) increased the proportions of metaphase I and diploid oocytes and polyploid zygotes. A significant (p<0.01) dose response for taxol-induced hyperploidy in oocytes and zygotes was found. These results support the hypothesis that taxol-induced meiotic delay and spindle defects contribute to aneuploid mouse oocytes and zygotes.  相似文献   
167.
A male zebra finch begins to learn to sing by memorizing a tutor's song during a sensitive period in juvenile development. Tutor song memorization requires molecular signaling within the auditory forebrain. Using microarray and in situ hybridizations, we tested whether the auditory forebrain at an age just before tutoring expresses a different set of genes compared with later life after song learning has ceased. Microarray analysis revealed differences in expression of thousands of genes in the male auditory forebrain at posthatch day 20 (P20) compared with adulthood. Furthermore, song playbacks had essentially no impact on gene expression in P20 auditory forebrain, but altered expression of hundreds of genes in adults. Most genes that were song‐responsive in adults were expressed at constitutively high levels at P20. Using in situ hybridization with a representative sample of 44 probes, we confirmed these effects and found that birds at P20 and P45 were similar in their gene expression patterns. Additionally, eight of the probes showed male–female differences in expression. We conclude that the developing auditory forebrain is in a very different molecular state from the adult, despite its relatively mature gross morphology and electrophysiological responsiveness to song stimuli. Developmental gene expression changes may contribute to fine‐tuning of cellular and molecular properties necessary for song learning. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   
168.
A wide range of regulatory processes in the cell are mediated by flexible peptides that fold upon binding to globular proteins. Computational efforts to model these interactions are hindered by the large number of rotatable bonds in flexible peptides relative to typical ligand molecules, and the fact that different peptides assume different backbone conformations within the same binding site. In this study, we present Rosetta FlexPepDock, a novel tool for refining coarse peptide–protein models that allows significant changes in both peptide backbone and side chains. We obtain high resolution models, often of sub‐angstrom backbone quality, over an extensive and general benchmark that is based on a large nonredundant dataset of 89 peptide–protein interactions. Importantly, side chains of known binding motifs are modeled particularly well, typically with atomic accuracy. In addition, our protocol has improved modeling quality for the important application of cross docking to PDZ domains. We anticipate that the ability to create high resolution models for a wide range of peptide–protein complexes will have significant impact on structure‐based functional characterization, controlled manipulation of peptide interactions, and on peptide‐based drug design. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
169.
170.
The brain is now widely recognized as having the capacity to make steroids, neurosteroidogenesis. Although many functions are known for steroids that might be made in the brain, the evolution of and natural biological functions for these neurosteroids are not fully understood. In songbirds, neurosteroids may function in the development of neural circuits controlling song and may also participate in the activation of some steroid-dependent behaviors during the non-breeding season. In addition to neuroanatomical and behavioral evidence, we have physiological, molecular, and biochemical evidence for the expression and activity of steroidogenic enzymes in the brains of developing and adult songbirds. We review the evidence published so far for songbird neurosteroidogenesis and discuss why we believe songbird species are excellent models for the study of brain steroid synthesis and action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号