首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   794篇
  免费   61篇
  855篇
  2023年   6篇
  2022年   7篇
  2021年   14篇
  2020年   5篇
  2019年   16篇
  2018年   18篇
  2017年   17篇
  2016年   19篇
  2015年   33篇
  2014年   25篇
  2013年   49篇
  2012年   50篇
  2011年   50篇
  2010年   31篇
  2009年   18篇
  2008年   33篇
  2007年   36篇
  2006年   32篇
  2005年   38篇
  2004年   24篇
  2003年   20篇
  2002年   25篇
  2001年   21篇
  2000年   23篇
  1999年   12篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   7篇
  1992年   14篇
  1991年   13篇
  1990年   9篇
  1989年   9篇
  1988年   8篇
  1987年   9篇
  1986年   8篇
  1985年   10篇
  1983年   5篇
  1982年   5篇
  1980年   6篇
  1979年   6篇
  1975年   9篇
  1974年   10篇
  1972年   6篇
  1969年   5篇
  1968年   10篇
  1966年   5篇
  1964年   6篇
排序方式: 共有855条查询结果,搜索用时 15 毫秒
141.

Background

It is unclear to what extent pre-clinical studies in genetically homogeneous animal models of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder, can be informative of human pathology. The disease modifying effects in animal models of most therapeutic compounds have not been reproduced in patients. To advance therapeutics in ALS, we need easily accessible disease biomarkers which can discriminate across the phenotypic variants observed in ALS patients and can bridge animal and human pathology. Peripheral blood mononuclear cells alterations reflect the rate of progression of the disease representing an ideal biological substrate for biomarkers discovery.

Methods

We have applied TMTcalibrator?, a novel tissue-enhanced bio fluid mass spectrometry technique, to study the plasma proteome in ALS, using peripheral blood mononuclear cells as tissue calibrator. We have tested slow and fast progressing SOD1G93A mouse models of ALS at a pre-symptomatic and symptomatic stage in parallel with fast and slow progressing ALS patients at an early and late stage of the disease. Immunoassays were used to retest the expression of relevant protein candidates.

Results

The biological features differentiating fast from slow progressing mouse model plasma proteomes were different from those identified in human pathology, with only processes encompassing membrane trafficking with translocation of GLUT4, innate immunity, acute phase response and cytoskeleton organization showing enrichment in both species. Biological processes associated with senescence, RNA processing, cell stress and metabolism, major histocompatibility complex-II linked immune-reactivity and apoptosis (early stage) were enriched specifically in fast progressing ALS patients. Immunodetection confirmed regulation of the immunosenescence markers Galectin-3, Integrin beta 3 and Transforming growth factor beta-1 in plasma from pre-symptomatic and symptomatic transgenic animals while Apolipoprotein E differential plasma expression provided a good separation between fast and slow progressing ALS patients.

Conclusions

These findings implicate immunosenescence and metabolism as novel targets for biomarkers and therapeutic discovery and suggest immunomodulation as an early intervention. The variance observed in the plasma proteomes may depend on different biological patterns of disease progression in human and animal model.
  相似文献   
142.

Aims

Accumulation of carbon dioxide (CO2) in cucumber fermentations is known to cause hollow cavities inside whole fruits or bloaters, conducive to economic losses for the pickling industry. This study focused on evaluating the use of a malic acid decarboxylase (MDC)‐deficient starter culture to minimize CO2 production and the resulting bloater index in sodium chloride‐free cucumber fermentations brined with CaCl2.

Methods and Results

Attempts to isolate autochthonous MDC‐deficient starter cultures from commercial fermentations, using the MD medium for screening, were unsuccessful. The utilization of allochthonous MDC‐deficient starter cultures resulted in incomplete utilization of sugars and delayed fermentations. Acidified fermentations were considered, to suppress the indigenous microbiota and favour proliferation of the allochthonous MDC‐deficient Lactobacillus plantarum starter cultures. Inoculation of acidified fermentations with L. plantarum alone or in combination with Lactobacillus brevis minimally improved the conversion of sugars. However, inoculation of the pure allochthonous MDC‐deficient starter culture to 107 CFU per ml in acidified fermentations resulted in a reduced bloater index as compared to wild fermentations and those inoculated with the mixed starter culture.

Conclusions

Although use of an allochthonous MDC‐deficient starter culture reduces bloater index in acidified cucumber fermentations brined with CaCl2, an incomplete conversion of sugars is observed.

Significance and Impact of the Study

Economical losses due to the incidence of bloaters in commercial cucumber fermentations brined with CaCl2 may be reduced utilizing a starter culture to high cell density.  相似文献   
143.
Cement plants account for significant emissions of CO2 and other pollutants into the atmosphere. As a means for its mitigation, we tested the effect of a cement industry-based flue gas simulation (FGS — 18% CO2, 9% O2, 300 ppm NO2, 140 ppm SO2) on the green alga, Chlorella sorokiniana. Culture pH, cell density, cell viability and productivity, specific growth rates, photosynthetic performance, and biochemical composition were monitored. The treatments consisted of different FGS volumes (0.1, 0.3, 0.8, 1.5, 6, and 48 L day?1) that were applied in a series of laboratory-scale semi-continuous batch cultures under controlled conditions. Controls were exposed to 18% CO2 enriched air. Cell density showed that C. sorokiniana was able to grow in all treatments, but compared to the controls, low pH (~ 5.0) caused by 48 L FGS day?1 led to 27% decrease in specific growth rate. Increasing FGS exposure decreased maximum and operational quantum yields obtained by pulse amplitude modulated fluorometry, while photochemical quenching remained constant (~ 0.93). The α and rETR max parameters calculated from rapid light curves decreased with increasing FGS exposure. Total proteins and carbohydrates (per cell basis) increased after 6 and 48 L FGS day?1, which can be advantageous for biotechnological applications, but cell productivity (cells L?1 day?1) decreased. Despite the effects in physiology, C. sorokiniana could withstand a pH range of 6.0–5.0 imposed by 48 L FGS day?1. Overall, C. sorokiniana can be considered a robust species in flue gas bioremediation.  相似文献   
144.
145.
Photoinduction of NADP-linked glyceraldehyde-3-phosphate dehydrogenase activity in etiolated pea seedlings was investigated in the presence of various concentrations of four inhibitors of protein synthesis (cycloheximide, actinomycin D, chloramphenicol and puromycin) and one photosynthesis inhibitor (DCMU), and compared with increase in chlorophyll and total protein contents. The enzymatic activity and chlorophyll showed similar responses to the action of the antibiotics, whereas they were not significantly affected by the presence of DCMU.  相似文献   
146.
147.
148.
149.
150.
Mesenchymal stromal cells (MSCs) are considered to be an excellent source in regenerative medicine. They contain several cell subtypes, including multipotent stem cells. MSCs are of particular interest as they are currently being tested using cell and gene therapies for a number of human diseases. They represent a rare population in tissues; for this reason, they require, before being transplanted, an in vitro amplification. This process may induce replicative senescence, thus affecting differentiation and proliferative capacities. Increasing evidence suggests that MSCs from fetal tissues are significantly more plastic and grow faster than MSCs from bone marrow. Here, we compare amniotic fluid mesenchymal stromal cells (AF‐MSCs) and bone marrow mesenchymal stromal cells (BM‐MSCs) in terms of cell proliferation, surface markers, multidifferentiation potential, senescence, and DNA repair capacity. Our study shows that AF‐MSCs are less prone to senescence with respect to BM‐MSCs. Moreover, both cell models activate the same repair system after DNA damage, but AF‐MSCs are able to return to the basal condition more efficiently with respect to BM‐MSCs. Indeed, AF‐MSCs are better able to cope with genotoxic stress that may occur either during in vitro cultivation or following transplantation in patients. Our findings suggest that AF‐MSCs may represent a valid alternative to BM‐MSCs in regenerative medicine, and, of great relevance, the investigation of the mechanisms involved in DNA repair capacity of both AF‐MSCs and BM‐MSCs may pave the way to their rational use in the medical field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号