全文获取类型
收费全文 | 359篇 |
免费 | 24篇 |
专业分类
383篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 9篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 5篇 |
2017年 | 7篇 |
2016年 | 12篇 |
2015年 | 12篇 |
2014年 | 19篇 |
2013年 | 17篇 |
2012年 | 19篇 |
2011年 | 20篇 |
2010年 | 16篇 |
2009年 | 11篇 |
2008年 | 6篇 |
2007年 | 7篇 |
2006年 | 16篇 |
2005年 | 15篇 |
2004年 | 11篇 |
2003年 | 8篇 |
2002年 | 14篇 |
2001年 | 11篇 |
2000年 | 14篇 |
1999年 | 10篇 |
1998年 | 6篇 |
1997年 | 6篇 |
1996年 | 7篇 |
1995年 | 2篇 |
1994年 | 6篇 |
1993年 | 2篇 |
1992年 | 5篇 |
1990年 | 4篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 6篇 |
1986年 | 8篇 |
1985年 | 7篇 |
1984年 | 5篇 |
1983年 | 3篇 |
1979年 | 6篇 |
1977年 | 5篇 |
1976年 | 3篇 |
1971年 | 4篇 |
1963年 | 2篇 |
1948年 | 1篇 |
1947年 | 1篇 |
1933年 | 1篇 |
1910年 | 1篇 |
1875年 | 1篇 |
排序方式: 共有383条查询结果,搜索用时 90 毫秒
11.
Desulfoferrodoxin is a small protein found in sulfate-reducing bacteria that contains two independent mononuclear iron centers, one ferric and one ferrous. Expression of desulfoferrodoxin from Desulfoarculus baarsii has been reported to functionally complement a superoxide dismutase deficient Escherichia coli strain. To elucidate by which mechanism desulfoferrodoxin could substitute for superoxide dismutase in E. coli, we have purified the recombinant protein and studied its reactivity toward O-(2). Desulfoferrodoxin exhibited only a weak superoxide dismutase activity (20 units mg(-1)) that could hardly account for its antioxidant properties. UV-visible and electron paramagnetic resonance spectroscopy studies revealed that the ferrous center of desulfoferrodoxin could specifically and efficiently reduce O-(2), with a rate constant of 6-7 x 10(8) M(-1) s(-1). In addition, we showed that membrane and cytoplasmic E. coli protein extracts, using NADH and NADPH as electron donors, could reduce the O-(2) oxidized form of desulfoferrodoxin. Taken together, these results strongly suggest that desulfoferrodoxin behaves as a superoxide reductase enzyme and thus provide new insights into the biological mechanisms designed for protection from oxidative stresses. 相似文献
12.
Drenjancevic-Peric I Lombard JH 《American journal of physiology. Heart and circulatory physiology》2004,287(2):H957-H962
To evaluate the potential role of impaired renin-angiotensin system (RAS) function in contributing to reduced vascular relaxation in Dahl salt-sensitive (S) rats, responses to ACh (10(-6) mol/l) and hypoxia (Po(2) reduction to 40-45 mmHg) were determined in isolated middle cerebral arteries of Dahl S rats, Brown Norway (BN) rats, and consomic rats having chromosome 13 (containing the renin gene) or chromosome 16 of the BN rat substituted into the Dahl S genetic background (SS-13(BN) and SS-16(BN), respectively). Arteries of BN rats on a low-salt (LS) diet (0.4% NaCl) dilated in response to ACh and hypoxia, whereas dilation in response to these stimuli was absent in Dahl S rats on LS diet. Vasodilation to ACh and hypoxia was restored in SS-13(BN) rats on an LS diet but not in SS-16(BN) rats. High-salt diet (4% NaCl), to suppress ANG II, eliminated vasodilation to hypoxia and ACh in BN and in SS-13(BN) rats. Treatment of SS-13(BN) rats with the AT(1) receptor antagonist losartan also eliminated the restored vasodilation in response to ACh and hypoxia. These studies suggest that restoration of normal RAS regulation in SS-13(BN) consomic rats restores vascular relaxation mechanisms that are impaired in Dahl S rats. 相似文献
13.
14.
Lombard A.T. Hilton-Taylor C. Rebelo A.G. Pressey R.L. Cowling R.M. 《Plant Ecology》1999,142(1-2):35-55
The Succulent Karoo biome is home to the world's richest succulent flora. It has approximately 1954 endemic plant species, and is the only semi-arid region to qualify as a hotspot of global significance. Despite its importance, only 2% of the biome is currently protected. Based on its flora, the biome can be divided into 12 bioregions, reflecting its high compositional turnover in relation to environmental and geographical gradients. Only three of these bioregions (the Gariep Centre, the Namaqualand Rocky Hills and the Tanqua Karoo) contain National Parks, and three contain large (over 10000 ha) provincial reserves (the Gariep Centre, the Namaqualand Rocky Hills and the Little Karoo). The current reserve system does little to conserve biodiversity, with only one reserve significantly conserving Red Data Book (RDB) plant diversity. Using a RDB plant species database of 3874 records at a quarter degree scale (QDS = 15×15), we used hotspot analyses and iterative reserve selection algorithms to identify possible locations for future reserves. The hotspot analysis and iterative analyses yielded similar results for the top 11 QDS, mainly due to very high local endemism. Also because of the local endemism and the high species turnover within the biome, the real-world iterative algorithm (starting with the seven already reserved QDS) selected a very large total number of QDS (59% of the total in the biome) to conserve all RDB species. As a possible alternative to conservation planning based on QDS, we also assessed priorities at the scale of bioregions, but showed that representation at this geographic level misses important areas defined at a finer scale. We suggest that if the objective is to maximise the retention of RDB species in the landscape (to pre-empt extinction by scheduling the allocation of limited conservation resources), at least the top 5% of QDS (n=11) selected by the iterative procedure, and identified as the core conservation sequence by analysis of endemicity and threat, should be given priority for reservation. Less extensive and, in some cases, less formal conservation action can be applied to QDS later in the sequence, based on species-specific monitoring and action plans. Of the 11 core areas, four fall in a node centred on the Vanrhynsdorp Centre, two fall in a node centred on the Kamiesberg, and the remaining five are isolated. With existing reserves, the core areas capture 50% of the RDB flora in 8% of the biome. 相似文献
15.
Zhu J Drenjancevic-Peric I McEwen S Friesema J Schulta D Yu M Roman RJ Lombard JH 《American journal of physiology. Heart and circulatory physiology》2006,291(2):H929-H938
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or changed to a high-salt (HS) diet (4% NaCl) for 3 days. Increases in intracellular Ca2+ ([Ca2+]i) in response to methacholine (10 microM) and histamine (10 microM) were significantly attenuated in aortic endothelial cells from rats fed a HS diet, whereas thapsigargin (10 microM)-induced increases in [Ca2+]i were unaffected. Methacholine-induced nitric oxide (NO) production was eliminated in endothelial cells of aortas from rats fed a HS diet. Low-dose ANG II infusion (5 ng x kg(-1) x min(-1) iv) for 3 days prevented impaired [Ca2+]i signaling response to methacholine and histamine and restored methacholine-induced NO production in aortas from rats on a HS diet. Adding Tempol (500 microM) to the tissue bath to scavenge superoxide anions increased NO release and caused N(omega)-nitro-L-arginine methyl ester-sensitive vascular relaxation in aortas from rats fed a HS diet but had no effect on methacholine-induced Ca2+ responses. Chronic treatment with Tempol (1 mM) in the drinking water restored NO release, augmented vessel relaxation, and increased methacholine-induced Ca2+ responses significantly in aortas from rats on a HS diet but not in aortas from rats on a LS diet. These findings suggest that 1) agonist-induced Ca2+ responses and NO levels are reduced in aortas of rats on a HS diet; 2) increased vascular superoxide levels contribute to NO destruction, and, eventually, to impaired Ca2+ signaling in the vascular endothelial cells; and 3) reduced circulating ANG II levels during elevated dietary salt lead to elevated superoxide levels, impaired endothelial Ca2+ signaling, and reduced NO production in the endothelium. 相似文献
16.
Cheryce L. Harrison Catherine B. Lombard Boyd J. Strauss Helena J. Teede 《Obesity (Silver Spring, Md.)》2013,21(5):904-909
Objective:
Optimizing gestational weight gain (GWG) in early pregnancy is of clinical and public health importance, especially in higher risk pregnancies.Design and Methods:
In a robustly designed, randomized controlled trial, 228 pregnant women at risk of developing gestational diabetes mellitus (GDM) were allocated to either control (written health information only) or intervention (four‐session lifestyle program). All women received standard maternal care. Measures were completed at 12‐15 and 26‐28 weeks gestation. Measures included anthropometrics (weight and height), physical activity (pedometer and International Physical Activity Questionnaire), questionnaires (risk perception), and GDM screening.Results:
The mean (SD) age [31.7 (4.5) and 32.4 (4.7) years] and body mass index [BMI; 30.3 (5.9) and 30.4 (5.6) kg/m2] were similar between control and intervention groups, respectively. By 28 weeks, GWG was significantly different between control and intervention groups [6.9 (3.3) vs. 6.0 (2.8) kg, P < 0.05]. When stratified according to baseline BMI, overweight women in the control group gained significantly more weight compared to overweight women in the intervention group [7.8 (3.4) vs. 6.0 (2.2) kg, P < 0.05], yet in obese women, GWG was similar in both groups. Physical activity levels declined by 28 weeks gestation overall (P < 0.01); however, the intervention group retained a 20% higher step count compared to controls [5,203 (3,368) vs. 4,140 (2,420) steps/day, P < 0.05]. Overall, GDM prevalence was 22%, with a trend toward less cases in the intervention group (P = 0.1).Conclusions:
Results indicate that a low‐intensity lifestyle intervention, integrated with antenatal care, optimizes healthy GWG and attenuates physical activity decline in early pregnancy. Efficacy in limiting weight gain was greatest in overweight women and in high‐risk ethnically diverse women. 相似文献17.
MutY is an adenine glycosylase in the base excision repair (BER) superfamily that is involved in the repair of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A and G:A mispairs in DNA. MutY contains a [4Fe-4S]2+ cluster that is part of a novel DNA binding motif, referred to as the iron-sulfur cluster loop (FCL) motif. This motif is found in a subset of members of the BER glycosylase superfamily, defining the endonuclease III-like subfamily. Site-specific cross-linking was successfully employed to investigate the DNA-protein interface of MutY. The photoreactive nucleotide 4-thiothymidine (4ST) incorporated adjacent to the OG:A mismatch formed a specific cross-link between the substrate DNA and MutY. The amino acid participating in the cross-linking reaction was characterized by positive ion electrospray ionization (ESI) tandem mass spectrometry. This analysis revealed Arg 143 as the site of modification in MutY. Arg 143 and nearby Arg 147 are conserved throughout the endo III-like subfamily. Replacement of Arg 143 and Arg 147 with alanine by site-directed mutagenesis reduces adenine glycosylase activity of MutY toward OG:A and G:A mispairs. In addition, the R143A and R147A enzymes exhibit a reduced affinity for duplexes containing the substrate analogue 2'-deoxy-2'-fluoroadenosine opposite OG and G. Modeling of MutY bound to DNA using an endonuclease III-DNA complex structure shows that these two conserved arginines are located within close proximity to the DNA backbone. The insight from mass spectrometry experiments combined with functional mutagenesis results indicate that these two amino acids in the [4Fe-4S]2+ cluster-containing subfamily play an important role in recognition of the damaged DNA substrate. 相似文献
18.
Claudia T Guimaraes Christiano C Simoes Maria Marta Pastina Lyza G Maron Jurandir V Magalhaes Renato CC Vasconcellos Lauro JM Guimaraes Ubiraci GP Lana Carlos FS Tinoco Roberto W Noda Silvia N Jardim-Belicuas Leon V Kochian Vera MC Alves Sidney N Parentoni 《BMC genomics》2014,15(1)
Background
Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.Results
Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.Conclusions
High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users. 相似文献19.
C R Pace-Asciak J Klein S Lombard J Torchia J Rokach 《Biochimica et biophysica acta》1985,836(1):153-156
[3H]Leukotriene A4 was incubated with various subcellular fractions of rat liver homogenates. After solvent extraction and purification on C18 Sep-Pak cartridges, tritiated products migrating on reversed-phase HPLC with authentic unlabelled leukotriene C4, D4 and B4 were observed. The identity of leukotriene C4 was confirmed through enzymatic conversion into D4 by gamma-glutamyl transpeptidase as well as by bioassay on the rat stomach fundus after HPLC purification. The contractile response to the extracted material was blocked by the SRS antagonist, FPL 55712. Leukotriene B4 synthesis was located in the 100 000 X g supernatant, while C4 synthesis was present in the corresponding pellet. Leukotriene C4 formation was enhanced when reduced glutathione was supplemented in the incubation medium. These results demonstrate the presence in rat liver of various enzymatic steps in leukotriene A4 catabolism. 相似文献
20.
Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults 下载免费PDF全文