首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   22篇
  307篇
  2023年   2篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   13篇
  2014年   7篇
  2013年   14篇
  2012年   18篇
  2011年   17篇
  2010年   11篇
  2009年   5篇
  2008年   11篇
  2007年   9篇
  2006年   20篇
  2005年   19篇
  2004年   10篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   9篇
  1989年   4篇
  1985年   2篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
  1973年   5篇
  1972年   3篇
  1971年   1篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1967年   4篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
81.
Congregado  F.  Estañol  I.  Espuny  M. J.  Fusté  M. C.  Manresa  M. A.  Marqués  A. M.  Guinea  J.  Simon-Pujol  M. D. 《Biotechnology letters》1985,7(12):883-888
Summary Exopolysaccharide production byPseudomonas sp. strain EPS-5028 increased under conditions of high C/N ratios at the pH range 6.7–8 and 25°C. The polymer was formed from a variety of carbon substrates and contains D-glucose, D-galactose and uronic acid in the approximate molar ratio of 325. The polysaccharide produced is of high viscosity (1,600 cP; 1% polymer in D. I. water).  相似文献   
82.
Studies performed in different organisms have highlighted the importance of protein kinase CK2 in cell growth and cell viability. However, the plant signaling pathways in which CK2 is involved are largely unknown. We have reported that a dominant-negative mutant of CK2 in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. We demonstrated that auxin transport is, indeed, impaired in these mutant plants, and that this correlates with misexpression and mislocalization of PIN efflux transporters and of PINOID. Our data establishes a link between CK2 activity and the regulation of auxin homeostasis in plants, strongly suggesting that CK2 might be required at multiple points of the pathways regulating auxin fluxes.Key words: protein kinase CK2, root development, auxin, PIN, PINOIDThe plant hormone auxin plays critical roles in plant growth and development.1 The most abundant natural auxin is the indol-3-acetic acid (IAA), which is synthesized in young apical tissues and then transported to the growing zones of the stem and root. The major route for long distance IAA movement is via the vascular tissue, but, additionally, a slower transport via cell-to-cell (called polar transport) is critical to generate auxin gradients within tissues. Formation of correct auxin gradients is thought to be essential for many plant developmental processes.2 In recent years, the IAA transporters have been identified, establishing the molecular basis to understand how auxin transport is regulated. In particular, the identification of the family of plasma-resident PIN proteins, the members of which function as IAA efflux carriers, and the knowledge of their polar localization in the plasma membrane (PM), contributed to generate models predicting the direction of IAA fluxes.3,4The factors that govern PIN targeting to a particular membrane domain are still not understood. It is known that PIN proteins constitutively undergo cycles of exocytosis and endocytosis to and from the PM, using distinct sorting and recycling endosome trafficking pathways.57 Phosphorylation/dephosphorylation by the Ser/Thr kinase PINOID (PID) and the protein phosphatase 2A, respectively, controls PIN proteins apical/basal localization at the PM, via the GNOM-mediated vesicle trafficking system.8 Interestingly, PID is a member of the plant AGC kinases, and, as it happens with its mammals AGC counterparts, is activated by a membrane-associated 3-phosphoinositide-dependent kinase (PDK1).9 Moreover, a functional similarity between PIN polar localization in response to auxin and glucose receptor (GLUT4) asymmetrical distribution in response to insulin, has been pointed out.10 In both cases, cargo proteins (GLUT4 and PIN, respectively) are transported from endosomal vesicles to PM and the process is mediated by PDK1-activated AGC kinases.Protein kinase CK2 is a Ser/Thr kinase evolutionary conserved in eukaryotes, which plays key roles in cell survival, cell division and other cellular processes. A loss-of-function mutant of CK2 in Arabidopsis, obtained by overexpression of a CK2α-inactive subunit, confirmed the essential role of this protein kinase for plant viability.11 Moreover, CK2mut plants showed a dramatic decrease of lateral root formation, inhibition of root growth and overproliferation of root hairs. We have further demonstrated that auxin transport is impaired in this plants, which is concomitant with missexpression of most of the PM-resident PIN proteins, and of PID.12 In addition, PIN proteins accumulated in endosomal vesicles and auxin gradients were disturbed, both in roots and shoots of CK2mut plants. In particular, root columella cells were depleted of auxin, although the maximum at the quiescent center was unchanged. Starch granule staining with lugol revealed that columella cells retained their fate, although their organization and/or cell shape were clearly affected (Fig. 1).Open in a separate windowFigure 1Lugol-stained starch granules in uninduced (−Dex) and Dex-induced (+Dex) CK2mut roots. In the central part of the figure, a sketch of the main morphogenetic characteristics of mutant roots (right plantlet) as compared to wild-type roots (left plantlet) is shown. Note the shorter roots, wavy phenotype, absence of lateral roots and overproliferation of root hairs in mutant plants.Our results strongly suggest that CK2 is a regulator of auxin-dependent responses, most likely by participating in the regulation of auxin transport. Strikingly, depletion of CK2 activity inhibits some auxin-dependent physiological responses whereas it enhances others. For instance, whereas shoot phototropism was completely absent, root gravitropism was enhanced.12 Figure 2 shows a time-course of DR5rev::GFP-derived signal after changing the gravity vector, in mutant and control Arabidopsis roots. The progressive auxin translocation to the lower side of the root after gravistimulation is more rapid and sustained in mutant than in control roots, which is likely responsible for the enhanced response to gravity found in mutant roots. Based on these results, we postulate that CK2 might act at different points of the auxin-induced regulatory pathway. As far as is known, the core module that regulates auxin transport is constituted by the protein kinase PID and a protein of the NPH3-domain family. NPH3-containing proteins play important roles in phototropic and gravitropic responses, and regulate polarity and endocytosis of PIN proteins.13 As has been proposed by other authors, the participation of one AGC kinase and one NPH3-like protein upstream of an ARF factor might be a common theme in response to different stimulus that are signaled by auxin.14 We propose that one of the functions of CK2 is the regulation of the activity of core proteins (Fig. 3). Mammalian AGC kinases are well known substrates of CK2 and CK2-dependent phosphorylation is critical for a full display of their activity. The PID and the NPH3-containing protein sequences contain numerous acidic-based motifs that are predicted CK2 phosphorylation sites. Moreover, according to Arabidopsis phosphoproteome databases, several members of the NPH3-containing protein family are predicted to be phosphorylated.15 In addition, we do not discard the possibility that other proteins involved in PIN transport might also be regulated by CK2-dependent phosphorylation. Experiments are in progress in our laboratory to assess the regulatory role of CK2 in auxin transport.Open in a separate windowFigure 2Time course of auxin relocation during root gravitropic response, as visualized by DR5rev::GFP fluorescence. Root pictures were taken at the indicated times after changing the direction of the gravity vector. Translocation of auxin to the lower part of the root is more rapid in Dex-induced CK2mut plants. Arrows indicate asymmetrical DR5::GFP fluorescence.Open in a separate windowFigure 3Proposed model for the role of CK2 in regulating auxin transport. The core module that regulates auxin transport (shown here as a black box) is constituted by the protein kinase PID and a protein of the NPH3-domain family. PID regulates apical-basal targeting of PIN proteins, by phosphorylating conserved Ser residues present in PIN hydrophilic loops.16 On the other hand, the family of NPH3-containing proteins regulates polarity and endocytosis of PIN proteins.13 There is also a functional similarity between the intracellular transport of PIN proteins and that of the glucose receptor (GLUT4),10 two processes that are signaled by AGC kinases. We propose that CK2 might be a regulator of the activity of the core proteins, by phosphorylating either the AGC kinase and/or the NPH3-containing protein. Mammalian CK2 is a known regulator of the activity of AGC kinases and other proteins participating in signaling pathways, such as in the Wnt/β-catenin signaling pathway.17  相似文献   
83.
During development and adult life synapses are remodeled in response to genetic programs and environmental cues. This synaptic plasticity is thought to be the basis of learning and memory. The larval neuromuscular junction of Drosophila is established during embryogenesis and grows during larval development to accommodate muscle growth and maintain synaptic homeostasis. This growth is dependent on bidirectional communication between the motoneuron and the muscle fiber. The best-characterized retrograde signaling pathway is defined by Glass bottom boat (Gbb), a morphogen of the transforming growth factor-beta (TGF-beta) superfamily. Gbb acts as a muscle-derived retrograde signal that activates the TGF-beta pathway presynaptically. This pathway includes the type II receptor Wishful thinking, type I receptors Thick veins and Saxophone, and the second messenger Smads Mothers against dpp (Mad) and Medea. Mutations that block this pathway result in small synapses that are morphologically aberrant and severely impaired functionally. An emerging anterograde signaling pathway is defined by Wingless, a morphogen of the Wnt family that acts as a motoneuron-derived anterograde signal required for both pre- and postsynaptic development. In the absence of Wingless the neuronal microtubule cytoskeleton regulator Futsch is down-regulated and synaptic growth impaired. Some of these morphogens have conserved roles in mammalian synaptogenesis, and genetic analysis suggests that additional signaling molecules are required for synaptic growth at the Drosophila neuromuscular junction.  相似文献   
84.
Following perception of a pathogenic attack, plants are able to develop a strong response with the corresponding activation of a plethora of defense-related genes. In this study we have characterized the mode of expression of the CEVI-1 gene from tomato plants, which encodes an anionic peroxidase. CEVI-1 expression is induced during the course of compatible viral and subviral infections, like many other defense-related genes, but is induced neither in incompatible interactions nor by signal molecules such as salicylic acid, ethylene, or methyl jasmonate. Additionally, CEVI-1 is induced in detached leaf tissues following a pathway distinct from that related to the classical wound response. We also describe the characterization of the structural CEVI-1 gene and compare the mode of expression in different transgenic plant species harboring a CEVI-1::GUS construct. Furthermore, we have isolated mutants in Arabidopsis, called dth mutants, that are deregulated in the control of expression of this gene. From the initial analysis of some of these mutants it seems that activation of CEVI-1 gene expression correlates with a defect in the perception of auxins by the plant. All these results may suggest that, during systemic infections with viruses, auxin homeostasis is one of the components participating in the regulation of the overall defense response.  相似文献   
85.
Mouse and rat genomic sequences permit us to obtain a global view of evolutionary rearrangements that have occurred between the two species and to define hallmarks that might underlie these events. We present a comparative study of the sequence assemblies of mouse and rat genomes and report an enrichment of rodent-specific segmental duplications in regions where synteny is not preserved. We show that segmental duplications present higher rates of molecular evolution and that genes in rearranged regions have evolved faster than those located elsewhere. Previous studies have shown that synteny breakpoints between the mouse and the human genomes are enriched in human segmental duplications, suggesting a causative connection between such structures and evolutionary rearrangements. Our work provides further evidence to support the role of segmental duplications in chromosomal rearrangements in the evolution of the architecture of mammalian chromosomes and in the speciation processes that separate the mouse and the rat.  相似文献   
86.
The growth of six strains of yeast was analyzed in vitro in order to assess their capacity for colonizing (adhesion and invasion) hydrophilic contact lenses. Lenses with different water content were cultured in two culture media for 3, 7, 14, and 21 days. Only strain 93150 of Candida albicans could adhere to and invade the polymers. Specifically, fungal growth was observed in cultures with Sabourauds broth. The degree of yeast colonization of contact lenses was significantly related to the species, the strain, and the culture medium in which the yeast and lenses were cultured. The results here obtained were compared with those reported for the filamentous fungus Aspergillus niger 2700. For both microorganisms, the strain and the medium in which the lenses and microorganism were cultured influenced the colonization, but the percentage of colonized lenses, the degree of colonization, and the density and size of the internalized colonies were always noticeably lower for C. albicans 93150. Colonization by A. niger 2700 was also related to the type of material of the lenses and the incubation period. For both microorganisms, when the strain is right and the growth and development are correct, colonization of hydrophilic contact lenses occurs.  相似文献   
87.
Accumulation of heavy metals by Pseudomonas fluorescens 4F39 was rapid and pH-dependent. The affinity series for bacterial accumulation of metal cations decreased in the order Ni>>Hg>U>>As>Cu>Cd>Co>Cr>Pb. Metal cations were grouped into those whose accumulation increased as the pH increased, with a maximum accumulation at the pH before precipitation (Ni, Cu, Pb, Cd, Co), and those whose maximum accumulation was not associated with precipitation (Cr, As, U, Hg). High Ni2+ accumulation was studied. Electron microscopy indicated that at pH 9, Ni2+ accumulated on the cell surface as needle and hexagon-like precipitates, whose crystalline structure was confirmed by electron diffraction analysis and corresponded to two different orientations of the nickel hydroxide crystals. Crystals on cells showed marked anisotropy by X-ray powder diffraction, which differentiated them from crystals observed in nickel solution at pH 10 and 11 and from commercial nickel hydroxide. Nickel biosorption by Pseudomonas fluorescens 4F39 was a microprecipitation consequence of an ion exchange. Journal of Industrial Microbiology & Biotechnology (2000) 24, 146–151. Received 22 June 1999/ Accepted in revised form 04 December 1999  相似文献   
88.
89.
The introduced, invasive species Conyza canadensis L. covers large areas of the sandy levees next to the River Tamiš (Serbia), forming dense microcomplexes and dominating the other herbaceous species in the ruderal phytocoenosis with its aboveground mass and abundance. In addition to this species, a further 28 plant species were found, but the abundance and cover of these was significantly lower. The allelopathic influence of the species C. canadensis was investigated through analyzing the total phenolics and phenolic acids, as the main allelochemicals, in dead and vegetative parts and the soil beneath them. Seed germination and seedling growth of the target plants (Dactylis glomerata L. and Trifolium repens L.), which grow in this community, served as a measure of the inhibitory capacity of this species. It was established that the content of total phenolics and phenolic acids (p-coumaric, ferulic, p-hydroxybenzoic, vanillic and syringic) varies, following the order: vegetative plant parts > dead plant parts > sandy soil under C. canadensis. Water leachate and soils inhibited seed germination and seedling growth of the test plants to varying degrees, following the order: vegetative parts > dead parts > sandy soil, which is directly related to the content of total phenolics and phenolic acids in them. It was concluded that the pioneer species C. canadensis plays a decisive role in the first phases of vegetation succession and the process of soil formation on the barren sandy levees, owing to the synthesis of secondary phenolic metabolites.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号