首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   7篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   10篇
  2013年   7篇
  2012年   10篇
  2011年   8篇
  2010年   9篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  1998年   3篇
  1997年   2篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
51.
A method based on histidine ligand affinity chromatography has been utilized for the separation of DNA hydrolyzing autoantibodies from sera of patients suffering from systemic lupus erythematosus and primary antiphospholipid syndrome using the gel, histidyl-aminohexyl-sepharose. The separation of autoantibodies was carried out under mild chromatographic conditions. Human IgG subclass distribution in the different fractions separated on the column was studied by enzyme-linked immunosorbent assay. The purified DNA hydrolyzing autoantibodies were shown to hydrolyze plasmid DNA.  相似文献   
52.
The effects of putrescine and ethephon on peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.14.18.1), catalase (CAT; EC 1.11.1.6) activities and proline content in spinach leaves under saline stress were investigated. In control conditions, putrescine increased PPO and CAT activities and proline content, but decreased POD activity. Ethephon increased these three enzyme activities but did not affect proline content. In saline conditions, putrescine increased POD and CAT activities and proline content, while it decreased PPO activity. Ethephon increased both PPO and CAT activities and proline content, but decreased POD activity. Putrescine and ethephon have opposite effects on the enzyme activities and proline accumulation because they acts as antagonists.  相似文献   
53.
Summary A cluster of three genes involved in d-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis d-xylose isomerase (68% and 77%, respectively), and to E. coli d-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment d-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of d-xylose isomerases of different bacteria suggests that L. pentosus d-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli d-xylose isomerase and not to a second similarity group comprising d-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5-xylR (1167 bp, repressor) — xylA (1350 bp, D-xylose isomerase) — xylB (1506 bp, d-xylulose kinase) — 3 is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.  相似文献   
54.
55.
Models of rheumatoid arthritis (RA) in laboratory animals are important tools for research into pathogenic mechanisms and the development of effective, safe therapies. Rodent models (rats and mice) have provided important information about the pathogenic mechanisms. However, the evolutionary distance between rodents and humans hampers the translation of scientific principles into effective therapies. The impact of the genetic distance between the species is especially seen with treatments based on biological molecules, which are usually species-specific. The outbred nature and the closer anatomical, genetic, microbiological, physiological, and immunological similarity of nonhuman primates to humans may help to bridge the wide gap between inbred rodent strain models and the heterogeneous RA patient population. Here we review clinical, immunological and pathological aspects of the rhesus monkey model of collagen-induced arthritis, which has emerged as a reproducible model of human RA in nonhuman primates.  相似文献   
56.
57.
58.
Microscopic epilithic algae in the River Itchen at Otterbourne near Southampton and in the Ober Water in the New Forest were studied during 1984 and 1985. The River Itchen rises from chalk springs and has a steady pH near 8.2 and a mean alkalinity of 236 mg HCO3 1–1; at the study site the river is about 16 m wide and 20 cm deep, with a mean flow rate of 0.33 m s–1 and a discharge ranging through the year between 0.34 and 2.46 m3 s–1. The Ober Water, which drains sands and gravels, has a pH between 6.9 and 7.2 and a mean alkalinity of about 50 mg HCO3 1–1; at the study site it is about 6 m wide, with a mean flow rate of 0.27 m s–1 and a discharge ranging through the year between 0.08 and 1.0 m3 s–1.Epilithic algae removed from the pebbles that form the major part of the beds of both streams show seasonal changes in abundance and composition. Diatoms peaked in April/May and dominate the epilithic flora in both streams, comprising 70–95% of all algal cells; highest numbers of chlorophytes occurred in summer and cyanophytes increased in autumn. The species composition of the epilithic flora in the two streams was different, as was the population density; algal cell numbers ranged between 500 and 7000 cells mm–2 of stream floor in the River Itchen and between 8 and 320 cells mm–2 of stream floor in the Ober Water. The chlorophyll a content of epilithic algae in the River Itchen ranged between 115 and 415 mg m–2 of stream floor, representing an annual mean biomass of about 8 g m–2, whereas in the Ober Water a chlorophyll a content of 2.2 to 44 mg m–2 of stream floor was found, representing an annual mean biomass of about 1 g m–2. Cautious estimates of the annual production of epilithic algae in these streams suggest a value of about 600 g organic dry weight m–2 in the River Itchen and about 75 g m–2 in the Ober Water.  相似文献   
59.
60.
Predictions about one''s own action capabilities as well as the action capabilities of others are thought to be based on a simulation process involving linked perceptual and motor networks. Given the central role of motor experience in the formation of these networks, one''s present motor capabilities are thought to be the basis of their perceptual judgments about actions. However, it remains unknown whether the ability to form these action possibility judgments is affected by performance related changes in the motor system. To determine if judgments of action capabilities are affected by long-term changes in one''s own motor capabilities, participants with different degrees of upper-limb function due to their level (cervical vs. below cervical) of spinal cord injury (SCI) were tested on a perceptual-motor judgment task. Participants observed apparent motion videos of reciprocal aiming movements with varying levels of difficulty. For each movement, participants determined the shortest movement time (MT) at which they themselves and a young adult could perform the task while maintaining accuracy. Participants also performed the task. Analyses of MTs revealed that perceptual judgments for participant''s own movement capabilities were consistent with their actual performance- people with cervical SCI had longer judged and actual MTs than people with below cervical SCI. However, there were no between-group differences in judged MTs for the young adult. Although it is unclear how the judgments were adjusted (altered simulation vs. threshold modification), the data reveal that people with different motor capabilities due to SCI are not completely biased by their present capabilities and can effectively adjust their judgments to estimate the actions of others.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号