全文获取类型
收费全文 | 132篇 |
免费 | 18篇 |
专业分类
150篇 |
出版年
2021年 | 3篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 2篇 |
2015年 | 6篇 |
2014年 | 4篇 |
2013年 | 2篇 |
2012年 | 3篇 |
2011年 | 4篇 |
2010年 | 7篇 |
2009年 | 10篇 |
2008年 | 6篇 |
2007年 | 3篇 |
2004年 | 1篇 |
2002年 | 1篇 |
2001年 | 3篇 |
1999年 | 6篇 |
1998年 | 8篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 6篇 |
1990年 | 6篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 5篇 |
1986年 | 4篇 |
1985年 | 4篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 4篇 |
1977年 | 5篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1973年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有150条查询结果,搜索用时 0 毫秒
11.
12.
Pribat A Noiriel A Morse AM Davis JM Fouquet R Loizeau K Ravanel S Frank W Haas R Reski R Bedair M Sumner LW Hanson AD 《The Plant cell》2010,22(10):3410-3422
Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. 相似文献
13.
14.
15.
Regulation of one-carbon metabolism in Arabidopsis: the N-terminal regulatory domain of cystathionine gamma-synthase is cleaved in response to folate starvation 总被引:1,自引:0,他引:1 下载免费PDF全文
Loizeau K Gambonnet B Zhang GF Curien G Jabrin S Van Der Straeten D Lambert WE Rébeillé F Ravanel S 《Plant physiology》2007,145(2):491-503
In all organisms, control of folate homeostasis is of vital importance to sustain the demand for one-carbon (C1) units that are essential in major metabolic pathways. In this study we induced folate deficiency in Arabidopsis (Arabidopsis thaliana) cells by using two antifolate inhibitors. This treatment triggered a rapid and important decrease in the pool of folates with significant modification in the distribution of C1-substituted folate coenzymes, suggesting an adaptive response to favor a preferential shuttling of the flux of C1 units to the synthesis of nucleotides over the synthesis of methionine (Met). Metabolic profiling of folate-deficient cells indicated important perturbation of the activated methyl cycle because of the impairment of Met synthases that are deprived of their substrate 5-methyl-tetrahydrofolate. Intriguingly, S-adenosyl-Met and Met pools declined during the initial period of folate starvation but were further restored to typical levels. Reestablishment of Met and S-adenosyl-Met homeostasis was concomitant with a previously unknown posttranslational modification that consists in the removal of 92 amino acids at the N terminus of cystathionine gamma-synthase (CGS), the first specific enzyme for Met synthesis. Rescue experiments and analysis of different stresses indicated that CGS processing is specifically associated with perturbation of the folates pool. Also, CGS processing involves chloroplastic serine-type proteases that are expressed in various plant species subjected to folate starvation. We suggest that a metabolic effector, to date unidentified, can modulate CGS activity in vivo through an interaction with the N-terminal domain of the enzyme and that removal of this domain can suppress this regulation. 相似文献
16.
Effects of low-chloride solutions on action potentials of sheep cadiac purkinje fibers 总被引:2,自引:0,他引:2 下载免费PDF全文
The rapid repolarization during phase 1 of the action potential of sheep cardiac purkinje fibers has been attributed to a time- and voltage-dependent chloride current. In part, this conclusion was based on experiments that showed a substantial slowing of phase 1 when larger, presumably impermeant, anions were substituted for chloride in tyrode’s solution. We have re- examined the electrical effects of low-chloride solutions. We recorded action potentials of sheep cardiac purkinje fibers in normal tyrode’s solution and in low-chloride solutions made by substituting sodium propionate, acetylglycinate, methylsulfate, or methanesulfonate for the NaCl of Tyrode’s solution. Total calcium was adjusted to keep calcium ion activity of test solutions equal to that of control solutions. Propionate gave qualitatively variable results in preliminary experiments; it was not tested further. Low-chloride solutions made with the other anions gave much more consistent results: phase 1 and the notch that often occurs between phases 1 and 2 were usually unaffected, and the action potential duration usually increased. The only apparent change in the resting potential was a transient 3-6 mV depolarization when low-chloride solution was first admitted to the chamber, and a symmetrical transient hyperpolarization when chloride was returned to normal. If a time- and voltage-dependent chloride current exists in sheep cardiac purkinje fibers, our results suggest that it plays little role in generating phase 1 of the action potential. 相似文献
17.
18.
Tree Community Change across 700 km of Lowland Amazonian Forest from the Andean Foothills to Brazil 总被引:1,自引:1,他引:0
Nigel C. A. Pitman Hugo Mogollón Nallarett Dávila Marcos Ríos Roosevelt García-Villacorta Juan Guevara Timothy R. Baker Abel Monteagudo Oliver L. Phillips Rodolfo Vásquez-Martínez Manuel Ahuite Milton Aulestia Dairon Cardenas Carlos E. Cerón Pierre-André Loizeau David A. Neill Percy Núñez V. Walter A. Palacios Rodolphe Spichiger Elvis Valderrama 《Biotropica》2008,40(5):525-535
We describe patterns of tree community change along a 700-km transect through terra firme forests of western Amazonia, running from the base of the Andes in Ecuador to the Peru–Brazil border. Our primary question is whether floristic variation at large scales arises from many gradual changes or a few abrupt ones. Data from 54 1-ha tree plots along the transect support the latter model, showing two sharp discontinuities in community structure at the genus level. One is located near the Ecuador–Peru border, where the suite of species that dominates large areas of Ecuadorean forest declines abruptly in importance to the east. This discontinuity is underlain by a subterranean paleoarch and congruent with a change in soil texture. A second discontinuity is associated with the shift from clay to white sand soils near Iquitos. We hypothesize that the first discontinuity is part of an edaphic boundary that runs along the Andean piedmont and causes a transition from tree communities preferring richer, younger soils near the base of the Andes to those preferring poorer, older soils farther east. Because the floristic changes observed at this discontinuity are conserved for large distances to the east and west of it, the discontinuity is potentially key for understanding floristic variation in western Amazonia. The significant floristic turnover at the Ecuador–Peru border suggests that the only large protected area in the region—Ecuador's Yasuní National Park—is not adequate protection for the very diverse tree communities that cover vast areas of northern Peru. 相似文献
19.
20.
J Klein J Gonzalez J Duchene L Esposito JP Pradère E Neau C Delage D Calise A Ahluwalia P Carayon JB Pesquero M Bader JP Schanstra JL Bascands 《FASEB journal》2009,23(1):134-142
Renal fibrosis is the common histological feature of advanced glomerular and tubulointerstitial disease leading to end-stage renal disease (ESRD). However, specific antifibrotic therapies to slow down the evolution to ESRD are still absent. Because persistent inflammation is a key event in the development of fibrosis, we hypothesized that the proinflammatory kinin B1 receptor (B1R) could be such a new target. Here we show that, in the unilateral ureteral obstruction model of renal fibrosis, the B1R is overexpressed and that delayed treatment with an orally active nonpeptide B1R antagonist blocks macrophage infiltration, leading to a reversal of the level of renal fibrosis. In vivo bone marrow transplantation studies as well as in vitro studies on renal cells show that part of this antifibrotic mechanism of B1R blockade involves a direct effect on resident renal cells by inhibiting chemokine CCL2 and CCL7 expression. These findings suggest that blocking the B1R is a promising antifibrotic therapy. 相似文献