首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   8篇
  159篇
  2022年   1篇
  2021年   8篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   8篇
  2015年   13篇
  2014年   7篇
  2013年   12篇
  2012年   19篇
  2011年   16篇
  2010年   7篇
  2009年   9篇
  2008年   7篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1994年   5篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
排序方式: 共有159条查询结果,搜索用时 0 毫秒
101.
For decades, mesenchymal stromal cells (MSCs) have been of great interest in the fields of regenerative medicine, tissue engineering and immunomodulation. Their tremendous potential makes it desirable to cryopreserve and bank MSCs to increase their accessibility and availability. Postnatally derived MSCs seem to be of particular interest because they are harvested after delivery without ethical controversy, they have the capacity to expand at a higher rate than adult‐derived MSCs, in which expansion decreases with ageing, and they have demonstrated immunological and haematological supportive properties similar to those of adult‐derived MSCs. In this review, we focus on MSCs obtained from Wharton''s jelly (the mucous connective tissue of the umbilical cord between the amniotic epithelium and the umbilical vessels). Wharton''s jelly MSCs (WJ‐MSCs) are a good candidate for cellular therapy in haematology, with accumulating data supporting their potential to sustain haematopoietic stem cell engraftment and to modulate alloreactivity such as Graft Versus Host Disease (GVHD). We first present an overview of their in‐vitro properties and the results of preclinical murine models confirming the suitability of WJ‐MSCs for cellular therapy in haematology. Next, we focus on clinical trials and discuss tolerance, efficacy and infusion protocols reported in haematology for GVHD and engraftment.  相似文献   
102.

Background

The main soluble form of the receptor for advanced glycation end-products (sRAGE) is elevated during acute respiratory distress syndrome (ARDS). However other RAGE isoforms and multiple ligands have been poorly reported in the clinical setting, and their respective contribution to RAGE activation during ARDS remains unclear. Our goal was therefore to describe main RAGE isoforms and ligands levels during ARDS.

Methods

30 ARDS patients and 30 mechanically ventilated controls were prospectively included in this monocenter observational study. Arterial, superior vena cava and alveolar fluid levels of sRAGE, endogenous-secretory RAGE (esRAGE), high mobility group box-1 protein (HMGB1), S100A12 and advanced glycation end-products (AGEs) were measured in duplicate ELISA on day 0, day 3 and day 6. In patients with ARDS, baseline lung morphology was assessed with computed tomography.

Results

ARDS patients had higher arterial, central venous and alveolar levels of sRAGE, HMGB1 and S100A12, but lower levels of esRAGE and AGEs, than controls. Baseline arterial sRAGE, HMGB1 and S100A12 were correlated with nonfocal ARDS (AUC 0.79, 0.65 and 0.63, respectively). Baseline arterial sRAGE, esRAGE, S100A12 and AGEs were associated with severity as assessed by PaO2/FiO2.

Conclusions

This is the first kinetics study of levels of RAGE main isoforms and ligands during ARDS. Elevated sRAGE, HMGB1 and S100A12, with decreased esRAGE and AGEs, were found to distinguish patients with ARDS from those without. Our findings should prompt future studies aimed at elucidating RAGE/HMGB1/S100A12 axis involvement in ARDS.

Trial Registration

clinicaltrials.gov Identifier: NCT01270295.  相似文献   
103.
Protein aggregation is a hallmark of over 30 human pathologies. In these diseases, the aggregation of one or a few specific proteins is often toxic, leading to cellular degeneration and/or organ disruption in addition to the loss-of-function resulting from protein misfolding. Although the pathophysiological consequences of these diseases are overt, the molecular dysregulations leading to aggregate toxicity are still unclear and appear to be diverse and multifactorial. The molecular mechanisms of protein aggregation and therefore the biophysical parameters favoring protein aggregation are better understood. Here we perform an in silico survey of the impact of human sequence variation on the aggregation propensity of human proteins. We find that disease-associated variations are statistically significantly enriched in mutations that increase the aggregation potential of human proteins when compared to neutral sequence variations. These findings suggest that protein aggregation might have a broader impact on human disease than generally assumed and that beyond loss-of-function, the aggregation of mutant proteins involved in cancer, immune disorders or inflammation could potentially further contribute to disease by additional burden on cellular protein homeostasis.  相似文献   
104.
105.
Protein secretion through autotransporter and two-partner pathways   总被引:1,自引:0,他引:1  
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.  相似文献   
106.
The relationship between several growth components of a shootand the fates of the axillary meristems (developing in the axilsof the leaves) borne by that shoot were studied, on first-ordershoots of young peach trees. A comprehensive picture of thoserelationships was obtained by a discriminant analysis. Shootgrowth at meristem emergence date was characterized by internodelength, leaf-production rate and leaf-unfolding duration. Allpossible fates of axillary meristems at the end of the growingseason (i.e. blind nodes, single vegetative or flower bud, budassociations, sylleptic or proleptic shoots) were considered.Shoot-elongation rate determined meristem fates quantitatively.The number of buds produced by a meristem increased when theshoot-elongation rate increased. Qualitatively, the fate of axillary meristems was related tothe balance between shoot-growth components. If the subtendingleaf unfolded slowly, sylleptic or proleptic shoots were morelikely to develop than bud associations, for high shoot-elongationrates; and flower buds were more frequent than vegetative buds,for low shoot-elongation rates. Compared to flower buds, blindnodes appeared for similar shoot-elongation rates but longerinternodes and lower leaf-production rates. The emergence dateslightly modified the relation between shoot growth and axillary-meristemfates, but the main features held true throughout the growingseason. The relationships between shoot growth and meristem fates mayresult from competitive interactions between the growing subtendingleaf and the developing axillary meristem. Growing conditionsmight also influence both shoot growth and meristem fates byfavouring either cell enlargement or cell division.Copyright1995, 1999 Academic Press Peach tree, Prunus persica (L.) Batsch, axillary meristem, meristem fate, branching, flowering, shoot growth, discriminant analysis, exploratory analysis  相似文献   
107.
Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2–31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke.  相似文献   
108.
109.
Drosophila oocytes develop together with 15 sister germline nurse cells (NCs), which pass products to the oocyte through intercellular bridges. The NCs are completely eliminated during stages 12–14, but we discovered that at stage 10B, two specific NCs fuse with the oocyte and extrude their nuclei through a channel that opens in the anterior face of the oocyte. These nuclei extinguish in the ooplasm, leaving 2 enucleated and 13 nucleated NCs. At stage 11, the cell boundaries of the oocyte are mostly restored. Oocytes in egg chambers that fail to eliminate NC nuclei at stage 10B develop with abnormal morphology. These findings show that stage 10B NCs are distinguished by position and identity, and that NC elimination proceeds in two stages: first at stage 10B and later at stages 12–14.  相似文献   
110.
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD?=?4.51, α?=?0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD?=?3.60, α?=?0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD?=?3.07, α?=?0.29; dominant HLOD?=?3.03, α?=?0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD?=?3.02, α?=?0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号