首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   39篇
  2022年   4篇
  2021年   5篇
  2020年   8篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2015年   17篇
  2014年   9篇
  2013年   13篇
  2012年   20篇
  2011年   20篇
  2010年   18篇
  2009年   15篇
  2008年   14篇
  2007年   13篇
  2006年   19篇
  2005年   10篇
  2004年   11篇
  2003年   13篇
  2002年   14篇
  2001年   10篇
  2000年   8篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1986年   8篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   7篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   10篇
  1974年   2篇
  1973年   2篇
  1968年   3篇
  1967年   4篇
  1964年   2篇
  1934年   1篇
排序方式: 共有385条查询结果,搜索用时 31 毫秒
321.
Tritonia diomedea uses the Earth’s magnetic field as an orientation cue, but little is known about the neural mechanisms that underlie magnetic orientation behavior in this or other animals. Six large, individually identifiable neurons in the brain of Tritonia (left and right Pd5, Pd6, Pd7) are known to respond with altered electrical activity to changes in earth-strength magnetic fields. In this study we used immunochemical, electrophysiological, and neuroanatomical techniques to investigate the function of the Pd5 neurons, the largest magnetically responsive cells. Immunocytochemical studies localized TPeps, neuropeptides isolated from Pd5, to dense-cored vesicles within the Pd5 somata and within neurites adjacent to ciliated foot epithelial cells. Anatomical analyses revealed that neurites from Pd5 are located within nerves innervating the ipsilateral foot and body wall. These results imply that Pd5 project to the foot and regulate ciliary beating through paracrine release. Electrophysiological recordings indicated that, although both LPd5 and RPd5 responded to the same magnetic stimuli, the pattern of spiking in the two cells differed. Given that TPeps increase ciliary beating and Tritonia locomotes using pedal cilia, our results are consistent with the hypothesis that Pd5 neurons control or modulate the ciliary activity involved in crawling during orientation behavior.  相似文献   
322.
323.
Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.  相似文献   
324.
Despite its complexity, the neural circuitry in the auditory brainstem of vertebrates displays a fascinating amount of order. How is this order established in such a precise manner during ontogeny? In this review, we will summarize evidence for both activity-independent and activity-dependent processes involved in the generation of the auditory brainstem circuitry of birds and mammals. An example of activity-independent processes is the emergence of crude topography, which, most probably, is determined by molecular markers whose expression is genetically controlled. On the other hand, neuronal activity supports cell survival, affects dendritic and axonal growth, and influences fine tuning of maps. It appears that various types of neuronal activity, namely spontaneous versus acoustically evoked, bilateral versus unilateral, uncoordinated versus patterned, play a role during different aspects of development and cooperate with the activity-independent processes to ensure the proper formation of neuronal circuitry.  相似文献   
325.
Loggerhead sea turtles (Caretta caretta) derive both directional and positional information from the Earths magnetic field, but the mechanism underlying magnetic field detection in turtles has not been determined. One hypothesis is that crystals of biogenic, single-domain magnetite provide the physical basis of the magnetic sense. As a first step toward determining if magnetite is involved in sea turtle magnetoreception, hatchling loggerheads were exposed to pulsed magnetic fields (40 mT, 4 ms rise time) capable of altering the magnetic dipole moment of biogenic magnetite crystals. A control group of turtles was treated identically but not exposed to the pulsed fields. Both groups of turtles subsequently oriented toward a light source, implying that the pulsed fields did not disrupt the motivation to swim or the ability to maintain a consistent heading. However, when swimming in darkness under conditions in which turtles normally orient magnetically, control turtles oriented significantly toward the offshore migratory direction while those that were exposed to the magnetic pulses did not. These results are consistent with the hypothesis that at least part of the sea turtle magnetoreception system is based on magnetite. In principle, a magnetite-based magnetoreception system might be involved in detecting directional information, positional information, or both.  相似文献   
326.
327.
Dynamic combinatorial chemistry (DCC) is a recently introduced supramolecular approach to generate libraries of chemical compounds based on reversible exchange processes. The building elements are spontaneously and reversibly assembled to virtually encompass all possible combinations, allowing for simple one-step generation of complex libraries. The method has been applied to a variety of combinatorial systems, ranging from synthetic models to materials science and drug discovery, and enables the establishment of adaptive processes due to the dynamic interchange of the library constituents and its evolution toward the best fit to the target. In particular, it has the potential to become a useful tool in the direct screening of ligands to a chosen receptor without extensive prior knowledge of the site structure, and several biological systems have been targeted. In the vast field of glycoscience, the concept may find special perspective in response to the highly complex nature of carbohydrate-protein interactions. This chapter summarises studies that have been performed using DCC in biological systems, with special emphasis on glycoscience.  相似文献   
328.
Lohmann I  McGinnis N  Bodmer M  McGinnis W 《Cell》2002,110(4):457-466
Hox proteins control morphological diversity along the anterior-posterior body axis of animals, but the cellular processes they directly regulate are poorly understood. We show that during early Drosophila development, the Hox protein Deformed (Dfd) maintains the boundary between the maxillary and mandibular head lobes by activating localized apoptosis. Dfd accomplishes this by directly activating the cell death promoting gene reaper (rpr). One other Hox gene, Abdominal-B (Abd-B), also regulates segment boundaries through the regional activation of apoptosis. Thus, one mechanism used by Drosophila Hox genes to modulate segmental morphology is to regulate programmed cell death, which literally sculpts segments into distinct shapes. This and other emerging evidence suggests that Hox proteins may often regulate the maintenance of segment boundaries.  相似文献   
329.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) belongs to a class of membrane proteins termed tail-anchored proteins. Here, we show that the HCV RdRp C-terminal membrane insertion sequence traverses the phospholipid bilayer as a transmembrane segment. Moreover, the HCV RdRp was found to be retained in the endoplasmic reticulum (ER) or an ER-derived modified compartment both following transient transfection and in the context of a subgenomic replicon. An absolutely conserved GVG motif was not essential for membrane insertion but possibly provides a docking site for transmembrane protein-protein interactions. These findings have important implications for the functional architecture of the HCV replication complex.  相似文献   
330.
Nematocysts were isolated from individuals of Calliactis tricolor maintained under different feeding schedules or in different salinities in an attempt to determine how these culture conditions influence the discharge of isolated nematocysts. In addition, the discharge frequencies of nematocysts isolated from two different populations of sea anemones found in two different environments were also compared. Undischarged acontial nematocysts were isolated by extrusion into 1 M sodium citrate and were then treated with 5 mM EGTA to initiate discharge. Nematocysts isolated from anemones maintained under three different feeding schedules showed significantly different responses to the test solution. Nematocysts isolated from anemones maintained in two different salinities did not differ significantly in discharge frequency. Nematocysts isolated from individuals from two separate populations of C. tricolor responded significantly differently to 5 mM EGTA and to deionized water, and these responses also depended upon the isolation solution used. Environmental conditions are known to have an impact on the physiological state of most organisms, but this is the first study providing evidence that the environment or feeding state of an anemone affects discharge of isolated nematocysts. Inherent differences in ionic and osmotic characteristics among nematocysts could explain some of the ambiguities when comparing past studies of isolated nematocyst discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号