首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   47篇
  357篇
  2022年   4篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   10篇
  2013年   6篇
  2012年   11篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   10篇
  2007年   4篇
  2006年   18篇
  2005年   6篇
  2004年   11篇
  2003年   9篇
  2002年   9篇
  2001年   10篇
  2000年   7篇
  1999年   21篇
  1998年   12篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   23篇
  1991年   10篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   10篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1970年   2篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
301.
Using a scaleable, directed library approach based on orthogonally protected advanced intermediates, we have prepared a series of potent keto-1,2,4-oxadiazoles designed to explore the P(2) binding pocket of human mast cell tryptase, while building in a high degree of selectivity over human trypsin and other serine proteases.  相似文献   
302.

Background  

G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors.  相似文献   
303.
Loss of heterozygosity (LOH) contributes significantly to the inactivation of tumor suppressor genes and may involve a variety of mechanisms. Studying loss of HLA-A2 alleles in human lymphoblastoid cell lines, we previously showed that mitotic recombination and chromosome loss with concomitant duplication of the non-selected chromosome were the most frequent mechanisms of LOH. In the present study we used the HLA system to determine the rate and spectrum of LOH mutations in the EBV transformed lymphoblastoid cell line R83-4915. Spontaneous loss of HLA-A2 in R83-4915 occurred with a rate of 7.9x10-7 which was 5 to 10-times lower compared to the previously observed rate of loss of HLA-A2 in other lymphoblastoid cell lines. Among the HLA-A2 mutants, 27% did not show LOH of additional chromosome 6 markers. Molecular analysis showed that neither large deletion nor gene conversion was the cause for their mutant phenotype. The remaining mutants showed LOH, which was caused by mitotic recombination (40%) and chromosome loss (33%). However, the chromosome loss observed in mutants of R83-4915 was not accompanied by the duplication of the remaining chromosome. Instead 3 out of 5 mutants became polyploid suggesting that different mechanisms exist to compensate for chromosome loss. In conclusion, the rate and types of LOH that can be observed in cell lines obtained from various donors may depend on the genetic make-up or the transformation status of these cells  相似文献   
304.
A method has been developed to determine the adducts formed upon interaction of cis- and trans-diamminedichloroplatinum(II) (cis- and trans-DDP) with DNA. After 5 h at 50 degrees C in the dark, the amount of cis-DDP bound to salmon sperm DNA was larger than the amount of the trans-isomer. After enzymatic degradation with deoxyribonucleases to nucleotides and Pt-containing (oligo)nucleotides, the various products were separated by DEAE chromatography and analyzed for Pt by flameless AAS. Indications were obtained for the presence of nucleotides containing monofunctionally bound Pt and of adducts originating from interstrand DNA crosslinks. DEAE chromatography of digests of cis-DDP-treated DNA yielded a product with overall charge -1, which was identified with NMR and CD as cis-[Pt(NH3)2-d(pGpG)], the oligonucleotide derived from intrastrand crosslinks between two adjacent guanines. Another major peak contained Pt-oligonucleotides with overall charge -2, which could be derived from intrastrand crosslinks between two guanines at sites with pGpXpG (X=T,C,A or G) base sequences.  相似文献   
305.

Background  

Inteins are self-splicing protein elements. They are translated as inserts within host proteins that excise themselves and ligate the flanking portions of the host protein (exteins) with a peptide bond. They are encoded as in-frame insertions within the genes for the host proteins. Inteins are found in all three domains of life and in viruses, but have a very sporadic distribution. Only a small number of intein coding sequences have been identified in eukaryotic nuclear genes, and all of these are from ascomycete or basidiomycete fungi.  相似文献   
306.
The determination of thelacZ mutant frequency in gt10lacZ phage vectors isolated from the transgenic mouse strain 40.6 (MutaMouse), requires the screening of large numbers of phages on -galactosidase activity. Existing methods rely on distinguishing a few white plaques on X-gal containing plates amongst a multide of blue ones which is both time-consuming and expensive. The new screening method described here employs the galactose sensitiveEscherichia coli C lacZ recA galE strain into which a multicopy plasmid has been introduced, which results in over-expression of thegalK andgalT genes. In the presence of phenyl--d-galactopyranoside, a substrate for -galactosidase, this leads to the suppression of lacZ + phage propagation without affecting the ability of lacZ phages to form plaques. With this method it is possible to screen 1.5×106 phages on a single 9-cm Petri dish. Furthermore, the need for blue/white screening has been eliminated.  相似文献   
307.
In the past years, several methodologies were developed for potency ranking of genotoxic carcinogens and germ cell mutagens. In this paper, we analyzed six sub-classes of covalent deoxyribonucleic acid (DNA) binding antineoplastic drugs comprising a total of 37 chemicals and, in addition, four alkyl-epoxides, using four approaches for the ranking of genotoxic agents on a potency scale: the EPA/IARC genetic activity profile (GAP) database, the ICPEMC agent score system, and the analysis of qualitative and quantitative structure-activity and activity-activity relationships (SARs, AARs) between types of DNA modifications and genotoxic endpoints. Considerations of SARs and AARs focused entirely on in vivo data for mutagenicity in male germ cells (mouse, Drosophila), carcinogenicity (TD50s) and acute toxicity (LD50s) in rodents, whereas the former two approaches combined the entire database on in vivo and in vitro mutagenicity tests. The analysis shows that the understanding and prediction of rank positions of individual genotoxic agents requires information on their mechanism of action. Based on SARs and AARs, the covalent DNA binding antineoplastic drugs can be divided into three categories. Category 1 comprises mono-functional alkylating agents that primarily react with N7 and N3 moieties of purines in DNA. Efficient DNA repair is the major protective mechanism for their low and often not measurable genotoxic effects in repair-competent germ cells, and the need of high exposure doses for tumor induction in rodents. Due to cell type related differences in the efficiency of DNA repair, a strong target cell specificity in various species regarding the potency of these agents for adverse effects is found. Three of the four evaluation systems rank category 1 agents lower than those of the other two categories. Category 2 type mutagens produce O-alkyl adducts in DNA in addition to N-alkyl adducts. In general, certain O-alkyl DNA adducts appear to be slowly repaired, or even not at all, which make this kind of agents potent carcinogens and germ cell mutagens. Especially the inefficient repair of O-alkyl—pyrimidines causes the high mutational response of cells to these agents. Agents of this category give high potency scores in all four expert systems. The major determinant for the high rank positions on any scale of genotoxic of category 3 agents is their ability to induce primarily structural chromosomal changes. These agents are able to cross-link DNA. Their high intrinsic genotoxic potency appears to be related to the number of DNA cross-links per target dose unit they can induce. A confounding factor among category 3 agents is that often the genotoxic endpoints occur closed to or toxic levels, and that the width of the mutagenic dose range, i.e., the dose area between the lowest observed effect level and the LD50, is smaller (usually no more than 1 logarithmic unit) than for chemicals of the other two categories. For all three categories of genotoxic agents, strong correlations are observed between their carcinogenic potency, acute toxicity and germ cell specificity.  相似文献   
308.
Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and non-protein-bound SH (NPSH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20 per cent for the three types of radiation damage. Also under severely hypoxic conditions (0.01 microM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30 per cent). At somewhat higher concentrations of oxygen (0.5-10 microM) however, the sensitization amounted to about 90 per cent for the induction of ssb and dsb and about 50 per cent for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen.  相似文献   
309.
An immunochemical method has been used to detect quantitatively DNA damage caused by ionizing radiation in germ cells. With this method, DNA strand breaks as well as lesions converted into breaks in alkaline medium are measured as a function of controlled partial unwinding of the DNA, a time-dependent process starting at each breakage site, followed by the determination of the relative amount of single-stranded regions by use of a single-strand specific monoclonal antibody. With this method the induction and repair of DNA damage in different cellular stages of spermatogenesis (spermatocytes, round and elongated spermatids) of the hamster were investigated. Germ cells were irradiated in vitro with 60Co-gamma-rays, at doses between 0 and 5 Gy. A linear dose-response relationship was observed. Spermatocytes and round spermatids had normal, fast repair of the lesions when compared with the repair of these sites in cultured V79 or CHO cells and human lymphocytes. The elongated spermatids, however, showed hardly any repair. Similar results were obtained after the in vivo gamma-irradiation of hamsters with doses of 0. 4, and 8 Gy and subsequent isolation of germ cells. The damage was still detectable in the elongated spermatids at 24 h after exposure. The results of the experiments show substantial differences in repair capacity between different stages of germ cell development. Because DNA is the major target for mutation induction, this assay may be useful for assessment of the genetic risk of exposure of male germ cells to ionizing radiation, in relation to the stage of development.  相似文献   
310.
As a continuation of our efforts to discover novel apoptosis inducers as anticancer agents using a cell-based caspase HTS assay, 2-phenyl-oxazole-4-carboxamide derivatives were identified. The structure-activity relationships of this class of molecules were explored. Compound 1k, with EC(50) of 270 nM and GI(50) of 229 nM in human colorectal DLD-1 cells, was selected and demonstrated the ability to cleave PARP and displayed DNA laddering, the hallmarks of apoptosis. Compound 1k showed 63% tumor growth inhibition in human colorectal DLD-1 xenograft mouse model at 50 mpk, bid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号