首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   47篇
  2022年   4篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   10篇
  2013年   6篇
  2012年   11篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   10篇
  2007年   4篇
  2006年   18篇
  2005年   6篇
  2004年   11篇
  2003年   9篇
  2002年   9篇
  2001年   10篇
  2000年   7篇
  1999年   21篇
  1998年   12篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   23篇
  1991年   10篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   10篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1970年   2篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
161.
Kumaran S  Kozlov AG  Lohman TM 《Biochemistry》2006,45(39):11958-11973
We have examined the single-stranded DNA (ssDNA) binding properties of the Saccharomyces cerevisiae replication protein A (scRPA) using fluorescence titrations, isothermal titration calorimetry, and sedimentation equilibrium to determine whether scRPA can bind to ssDNA in multiple binding modes. We measured the occluded site size for scRPA binding poly(dT), as well as the stoichiometry, equilibrium binding constants, and binding enthalpy of scRPA-(dT)L complexes as a function of the oligodeoxynucleotide length, L. Sedimentation equilibrium studies show that scRPA is a stable heterotrimer over the range of [NaCl] examined (0.02-1.5 M). However, the occluded site size, n, undergoes a salt-dependent transition between values of n = 18-20 nucleotides at low [NaCl] and values of n = 26-28 nucleotides at high [NaCl], with a transition midpoint near 0.36 M NaCl (25.0 degrees C, pH 8.1). Measurements of the stoichiometry of scRPA-(dT)L complexes also show a [NaCl]-dependent change in stoichiometry consistent with the observed change in the occluded site size. Measurements of the deltaH(obsd) for scRPA binding to (dT)L at 1.5 M NaCl yield a contact site size of 28 nucleotides, similar to the occluded site size determined at this [NaCl]. Altogether, these data support a model in which scRPA can bind to ssDNA in at least two binding modes, a low site size mode (n = 18 +/- 1 nucleotides), stabilized at low [NaCl], in which only three of its oligonucleotide/oligosaccharide binding folds (OB-folds) are used, and a higher site size mode (n = 27 +/- 1 nucleotides), stabilized at higher [NaCl], which uses four of its OB-folds. No evidence for highly cooperative binding of scRPA to ssDNA was found under any conditions examined. Thus, scRPA shows some behavior similar to that of the E. coli SSB homotetramer, which also shows binding mode transitions, but some significant differences also exist.  相似文献   
162.

Background

Although personal cigarette smoking is the most important cause and modulator of chronic obstructive pulmonary disease (COPD), secondhand smoke (SHS) exposure could influence the course of the disease. Despite the importance of this question, the impact of SHS exposure on COPD health outcomes remains unknown.

Methods

We used data from two waves of a population-based multiwave U.S. cohort study of adults with COPD. 77 non-smoking respondents with a diagnosis of COPD completed direct SHS monitoring based on urine cotinine and a personal badge that measures nicotine. We evaluated the longitudinal impact of SHS exposure on validated measures of COPD severity, physical health status, quality of life (QOL), and dyspnea measured at one year follow-up.

Results

The highest level of SHS exposure, as measured by urine cotinine, was cross-sectionally associated with poorer COPD severity (mean score increment 4.7 pts; 95% CI 0.6 to 8.9) and dyspnea (1.0 pts; 95% CI 0.4 to 1.7) after controlling for covariates. In longitudinal analysis, the highest level of baseline cotinine was associated with worse COPD severity (4.7 points; 95% CI -0.1 to 9.4; p = 0.054), disease-specific QOL (2.9 pts; -0.16 to 5.9; p = 0.063), and dyspnea (0.9 pts; 95% CI 0.2 to 1.6 pts; p < 0.05), although the confidence intervals did not always exclude the no effect level.

Conclusion

Directly measured SHS exposure appears to adversely influence health outcomes in COPD, independent of personal smoking. Because SHS is a modifiable risk factor, clinicians should assess SHS exposure in their patients and counsel its avoidance. In public health terms, the effects of SHS exposure on this vulnerable subpopulation provide a further rationale for laws prohibiting public smoking.  相似文献   
163.

Background  

Biclustering has emerged as a powerful algorithmic tool for analyzing measurements of gene expression. A number of different methods have emerged for computing biclusters in gene expression data. Many of these algorithms may output a very large number of biclusters with varying degrees of overlap. There are no systematic methods that create a two-dimensional layout of the computed biclusters and display overlaps between them.  相似文献   
164.
165.
166.
We have reported a new polyethylene glycol (PEG)-modified, hemoglobin-based O2 carrier (MP4) with novel properties, including a large molecular excluded volume and low PO2 necessary to obtain 50% O2 (approximately 6 Torr). To evaluate the ability of MP4 to transport O2, we compared it with PEG-modified albumin (MPA) using the identical chemistry of attachment of PEG chains. The resulting solutions were well matched with respect to all physical properties except that MP4 is an O2 carrier, whereas MPA is not. An additional solution, 10% pentastarch, was matched with the PEG-modified proteins with regard to oncotic activity and viscosity but does not contain PEG. The model used to evaluate O2 transport was continuous exchange transfusion in the rat until the hematocrit was virtually unmeasurable. Objective end points included survival and the onset of anaerobic metabolism, signaled by acid-base derangement and accumulation of lactic acid. Continuous exchange transfusion of 2.5 blood volumes in rats (n=5 in each treatment group) was carried out over 60 min, such that the final hematocrit was between 0 and 5% in all animals. Animals were observed for an additional 70 min, when survivors were killed. Overall survival for the MP4 animals was 100%; no animal that received either pentastarch or MPA survived. The hematocrit at which lactic acid began to rise was approximately 14.8% in both pentastarch and MPA animals and 7.4% in the animals that received MP4. In all groups, the total hemoglobin was approximately 5 g/dl at this point. We conclude that, despite its low PO2 necessary to obtain 50% O2, MP4 effectively substitutes for red blood cell hemoglobin in its ability to oxygenate tissues in extreme hemodilution.  相似文献   
167.
Escherichia coli UvrD is a superfamily 1 DNA helicase and single-stranded DNA (ssDNA) translocase that functions in DNA repair and plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA and translocate along ssDNA with 3′-to-5′ directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ssDNA/duplex DNA junction show that its 2B sub-domain exists in a “closed” state and interacts with the duplex DNA. Here, we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an “open” state that differs by an ∼ 160° rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, we constructed a series of double-cysteine UvrD mutants and labeled them with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer. These studies show that the open and closed forms can interconvert in solution, with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA and ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain, suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme.  相似文献   
168.
We have previously shown that formation of a 1:1 fully wrapped complex of Escherichia coli SSB tetramer with (dT)70 displays a temperature-dependent sign reversal of the binding heat capacity (ΔCP). Here we examine SSB binding to shorter oligodeoxynucleotides ((dX)35) to probe whether this effect requires binding of one or two (dX)35 molecules per SSB tetramer. We find that the ΔCP for the first molecule of (dX)35 is always negative. However, a sign reversal of ΔCP from negative to positive occurs with increasing temperature for binding of the second (dX)35. This striking behavior of ΔCP for the second (dX)35 appears linked to conformational changes within the ssDNA-SSB complex that are required to form a fully wrapped (SSB)65 binding mode. These results also underscore that binding heat capacities of macromolecular interactions have multiple origins that cannot be understood simply on the basis of examining static structures.  相似文献   
169.
Pannexin 1 (Panx1) is a ubiquitously expressed protein forming large conductance channels that are central to many distinct inflammation and injury responses. There is accumulating evidence showing ATP released from Panx1 channels, as well as metabolites, provide effective paracrine and autocrine signaling molecules that regulate different elements of the injury response. As channels with a broad range of permselectivity, Panx1 channels mediate the secretion and uptake of multiple solutes, ranging from calcium to bacterial derived molecules. In this review, we describe how Panx1 functions in response to different pro-inflammatory stimuli, focusing mainly on signaling coordinated by the vasculature. How Panx1 mediates ATP release by injured cells is also discussed. The ability of Panx1 to serve as a central component of many diverse physiologic responses has proven to be critically dependent on the context of expression, post-translational modification, interacting partners, and the mode of stimulation.  相似文献   
170.
Escherichia coli RecBC, a rapid and processive DNA helicase with only a single ATPase motor (RecB), possesses two distinct single‐stranded DNA (ssDNA) translocase activities that can operate on each strand of an unwound duplex DNA. Using a transient kinetic assay to detect phosphate release, we show that RecBC hydrolyzes the same amount of ATP when translocating along ssDNA using only its primary translocase (0.81 ± 0.05 ATP/nt), only its secondary translocase (1.12 ± 0.06 ATP/nt), or both translocases simultaneously (1.07 ± 0.09 ATP/nt). A mutation within RecB (Y803H) that slows the primary translocation rate of RecBC also slows the secondary translocation rate to the same extent. These results indicate that the ATPase activity of the single RecB motor drives both the primary and secondary RecBC translocases in a tightly coupled reaction. We further show that RecBC also hydrolyzes the same amount of ATP (0.95 ± 0.08 ATP/bp) while processively unwinding duplex DNA, suggesting that the large majority, possibly all, of the ATP hydrolyzed by RecBC during DNA unwinding is used to fuel ssDNA translocation rather than to facilitate base pair melting. A model for DNA unwinding is proposed based on these observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号