首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   47篇
  338篇
  2022年   3篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   5篇
  2012年   12篇
  2011年   10篇
  2010年   7篇
  2009年   3篇
  2008年   10篇
  2007年   5篇
  2006年   13篇
  2005年   5篇
  2004年   11篇
  2003年   8篇
  2002年   9篇
  2001年   9篇
  2000年   6篇
  1999年   20篇
  1998年   9篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   23篇
  1991年   10篇
  1990年   5篇
  1989年   10篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   10篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1970年   2篇
排序方式: 共有338条查询结果,搜索用时 0 毫秒
21.
BackgroundIn the past few years, an increasing number of studies have reported the potential use of microRNAs (miRNA) as circulating biomarkers for diagnosis or prognosis of a wide variety of diseases. There is, however, a lack of reproducibility between studies. Due to the high miRNA content in platelets this may partly be explained by residual platelets in the plasma samples used. When collecting fresh plasma samples, it is possible to produce cell-free/platelet-poor plasma by centrifugation. In this study, we systematically investigated whether biobanked EDTA plasma samples could be processed to be suitable for miRNA analysis.Materials and methodsBlood samples were collected from ten healthy volunteers and centrifuged to produce platelet-poor-plasma (PPP) and standard biobank plasma. After one week at ?80 °C the biobanked EDTA plasma was re-centrifuged by different steps to remove residual platelets. Using RT-qPCR the levels of 14 miRNAs in the different plasma preparations were compared to that of PPP.ResultsWe were able to remove residual platelets from biobanked EDTA plasma by re-centrifugation of the thawed samples. Nevertheless, for most of the investigated miRNAs, the miRNA level was significantly higher in the re-centrifuged biobanked plasma compared to PPP, even when the platelet count was reduced to 0–1×109/L.ConclusionWe found, that pre-storage centrifugation conditions have a significant impact on the measured EDTA plasma level of miRNAs known to be present in platelets. Even for the miRNAs found to be less effected, we showed that a 1.5–3 fold change in plasma levels may possible be caused by or easily overseen due to sample preparation and/or storage.  相似文献   
22.
Current treatment modalities for extremity sarcoma often include tumor extirpation plus neoadjuvant therapy. Limb-sparing surgery may require reconstruction of critical nerve defects. Neurotoxic side effects from adjuvant chemotherapy have been reported and raise concerns regarding the effects of chemotherapy on nerve regeneration. In an attempt to define the effects of adjuvant chemotherapy on peripheral nerve regeneration, cisplatin and vincristine were administered to rats following isografting of the posterior tibial nerve. Parameters used to assess peripheral nerve regeneration included walking track analysis and histomorphology. Sixty 250-g Sprague-Dawley rats were randomly allocated into one of three treatment groups. Each animal underwent a 15-mm reversed interposition nerve isograft from 30 donor rats into the right posterior tibial nerve. Ten animals served as control. The remaining animals were divided into two groups of 25 animals each. One group received cisplatin (75 mg/m2) and the other group received vincristine (1 mg/m2). Chemotherapy was administered at 4-week cycles for a total of six cycles (24 weeks). Walking track analysis was performed monthly. Nerve specimens were harvested from the grafted segment and the distal posterior tibial nerve for histomorphology. Walking track analysis demonstrated no statistical difference in print length between the control and chemotherapeutic groups at the conclusion of the study. The number of axons per square millimeter and nerve fiber density were not statistically different between control and chemotherapeutic groups. In the rodent posterior tibial nerve model, postoperative adjuvant therapy does not significantly alter functional outcome in peripheral nerve regeneration. The practice of immediate nerve grafting after tumor extirpation, despite planned postoperative chemotherapy, is supported.  相似文献   
23.
Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.  相似文献   
24.
Cultured human and embryonic chick fibroblasts possess different enzyme-mediated processes to repair cyclobutyl pyrimidine dimers induced in their deoxyribonucleic acid (DNA) by ultraviolet (UV) radiation. While dimers are corrected in human cells by excision repair, a photoenzymatic repair process exists in embryonic chick cells for the removal of these potentially deleterious UV photoproducts. We have utilized a sensitive enzymatic assay to monitor the disappearance, i.e. repair, of dimer-containing sites in fused populations of human and chick cells primarily consisting of multinucleate human/chick heterokaryons. Fused cultures were constructed such that UV photoproducts were present only in chick DNA when evaluating excision repair and only in human DNA when evaluating photoenzymatic repair. Based on the kinetics of site removal observed in these cultures we are led to conclude the following: Within heterokaryons per se the photoreactivating enzyme derived from chick nuclei and at least one excision-repair enzyme (presumably a UV endonuclease) derived from human nuclei act on UV-damaged DNA in foreign nuclei with an efficiency equal to that displayed toward their own nuclear DNA. Hence, after cell fusion these chick and human repair enzymes are apparently able to diffuse into foreign nuclei and once therein competently attack UV-irradiated DNA independently of its origin. In harmony with the situation in nonfused parental cultures, in heterokaryons the chick photoenzymatic repair process rapidly removed all dimer-containing sites from human DNA including the residual fraction normally acted upon slowly by the human excision-repair process.  相似文献   
25.
We have extended our investigations of the multiple binding modes that form between the Escherichia coli single strand binding (SSB) protein and single-stranded DNA (Lohman, T. M. & Overman, L. B. (1985) J. Biol. Chem. 260, 3594-3603; Bujalowski, W. & Lohman, T. M. (1986) Biochemistry 25, 7799-7802) by examining the effects of anions, pH, BaCl2, and protein binding density on the transitions among these binding modes. "Reverse" titrations that monitor the quenching of the intrinsic tryptophan fluorescence of the SSB protein upon addition of poly(dT) have been used to measure the apparent site size of the complex at 25 degrees C in pH 8.1 and 6.9 as a function of NaF, NaCl, NaBr, and MgCl2 concentrations. Under all conditions in which "reverse" titrations were performed, we observe three distinct binding modes with site sizes of 35 +/- 2, 56 +/- 3, and 65 +/- 3 nucleotides/SSB tetramer; however, the transitions among the three binding modes are strongly dependent upon both the cation and anion valence, type, and concentration as well as the pH. A net uptake of both cations and anions accompanies the transitions from the (SSB)35 to the (SSB)56 binding mode at pH 6.9, whereas at pH 8.1 this transition is anion-independent, and only a net uptake of cations occurs. The transition from the (SSB)56 to the (SSB)65 binding mode is dependent upon both cations and anions at both pH 6.9 and 8.1 (25 degrees C), and a net uptake of both cations and anions accompanies this transition. We have also examined the transitions by monitoring the change in the sedimentation coefficient of the SSB protein-poly(dT) complex as a function of MgCl2 concentration (20 degrees C, pH 8.1) and observe an increase in s20,w, which coincides with the increase in apparent site size of the complex, as measured by fluorescence titrations. The frictional coefficient of the complex decreases by a factor of two in progressing from the (SSB)35 to the (SSB)65 binding mode, indicating a progressive compaction of the complex throughout the transition. The transition between the (SSB)35 and the (SSB)56 complex is dependent on the protein binding density, with the lower site size (SSB)35 complex favored at higher binding density. These results indicate that the transitions among the various SSB protein-single-stranded DNA binding modes are complex processes that depend on a number of solution variables that are thermodynamically linked.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
26.
We have examined the frequency of infection of monocyte-derived and alveolar macrophages isolated from rhesus macaques inoculated with simian immunodeficiency virus (SIVmac) utilizing a semiquantitative PCR methodology. Animals were inoculated with either pathogenic (SIVmac239) or nonpathogenic (SIVmac1A11) molecularly cloned viruses of SIVmac, or with uncloned pathogenic SIVmacBIOL. The frequency of SIV DNA in macrophages was highest early after infection and at terminal stages of disease, whereas during the asymptomatic period, SIV DNA was present at very low levels in macrophages.  相似文献   
27.
28.
Summary The distribution of mesotocin and vasotocin was studied in the brain of the lizard Gekko gecko with antisera specific for either peptide. Both mesotocinergic and vasotocinergic perikarya are found in the paraventricular and supraoptic nuclei of the hypothalamus, whereas vasotocinergic neurons are exclusively present in the bed nucleus of the stria terminalis and in a cell group of the rhombencephalon. The distributional pattern of the mesotocinergic fibers corresponds closely to that of the vasotocinergic fibers. However, throughout the entire brain the mesotocinergic innervation is less dense than the vasotocinergic innervation. No sex differences are present in the mesotocinergic fiber system.Abbreviations acc nucleus accumbens - bst bed nucleus of the stria terminalis - bv blood vessel - dB diagonal band of Broca - dc dorsal cortex - dth dorsolateral thalamic nucleus - lc lateral cortex - me median eminence - oc optic chiasma - ot optic tract - pag periaqueductal grey - pvn paraventricular nucleus - rc rhombencephalic cell group - sep septum - son supraoptic nucleus - tect mesencephalic tectum - vth ventrolateral thalamus  相似文献   
29.
Escherichia coli UvrD protein is a 3' to 5' SF1 helicase required for DNA repair as well as DNA replication of certain plasmids. We have shown previously that UvrD can self-associate to form dimers and tetramers in the absence of DNA, but that a UvrD dimer is required to form an active helicase-DNA complex in vitro. Here we have used pre-steady state, chemical quenched flow methods to examine the kinetic mechanism for formation of the active, dimeric helicase-DNA complex. Experiments were designed to examine the steps leading to formation of the active complex, separate from the subsequent DNA unwinding steps. The results show that the active dimeric complex can form via two pathways. The first, faster path involves direct binding to the DNA substrate of a pre-assembled UvrD dimer (dimer path), whereas the second, slower path proceeds via sequential binding to the DNA substrate of two UvrD monomers (monomer path), which then assemble on the DNA to form the dimeric helicase. The rate-limiting step within the monomer pathway involves dimer assembly on the DNA. These results show that UvrD dimers that pre-assemble in the absence of DNA are intermediates along the pathway to formation of the functional dimeric UvrD helicase.  相似文献   
30.
S-Nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1–1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1C40A, Panx1C346A, and Panx1C426A). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1C40A/C346A) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号