首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   46篇
  2022年   3篇
  2021年   10篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   9篇
  2015年   2篇
  2014年   10篇
  2013年   7篇
  2012年   12篇
  2011年   11篇
  2010年   13篇
  2009年   5篇
  2008年   12篇
  2007年   4篇
  2006年   13篇
  2005年   6篇
  2004年   11篇
  2003年   8篇
  2002年   9篇
  2001年   9篇
  2000年   6篇
  1999年   19篇
  1998年   10篇
  1997年   2篇
  1995年   3篇
  1994年   7篇
  1993年   5篇
  1992年   24篇
  1991年   11篇
  1990年   5篇
  1989年   10篇
  1988年   8篇
  1987年   9篇
  1986年   8篇
  1985年   10篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1970年   3篇
  1934年   1篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
61.
Posttranslational modification of proteins, which include both the enzymatic alterations of protein side chains and main-chain peptide bond connectivity, is a fundamental regulatory process that is crucial for almost every aspects of cell biology, including the virus-host cell interaction and the SARS-CoV-2 infection. The posttranslational modification of proteins has primarily been studied in cells and tissues in an intra-proteomic context (where both substrates and enzymes are part of the same species). However, the inter-proteomic posttranslational modifications of most of the SARS-CoV-2 proteins by the host enzymes and vice versa are largely unexplored in virus pathogenesis and in the host immune response. It is now known that the structural spike (S) protein of the SARS-CoV-2 undergoes proteolytic priming by the host serine proteases for entry into the host cells, and N- and O-glycosylation by the host cell enzymes during virion packaging, which enable the virus to spread. New evidence suggests that both SARS-CoV-2 and the host proteins undergo inter-proteomic posttranslational modifications, which play roles in virus pathogenesis and infection-induced immune response by hijacking the host cell signaling. The purpose of this minireview is to bring attention of the scientific community to recent cutting-edge discoveries in this understudied area. It is likely that a better insight into the molecular mechanisms involved may open new research directions, and thereby contribute to novel therapeutic modality development against the SARS-CoV-2. Here we briefly discuss the rationale and touch upon some unanswered questions in this context, especially those that require attention from the scientific community.  相似文献   
62.
Oxadiazole derivatives were synthesized and evaluated for their ability to inhibit tubulin polymerization and to cause mitotic arrest in tumor cells. The most potent compounds inhibited tubulin polymerization at concentrations below 1 microM. Lead analogs caused mitotic arrest of A431 human epidermoid cells and cells derived from multi-drug resistant tumors (10, EC(50)=7.8 nM). Competition for the colchicine binding site and pharmacokinetic properties of selected potent compounds were also investigated and are reported herein, along with structure-activity relationships for this novel series of antimitotic agents.  相似文献   
63.
Zhou R  Kozlov AG  Roy R  Zhang J  Korolev S  Lohman TM  Ha T 《Cell》2011,146(2):222-232
SSB proteins bind to and control the accessibility of single-stranded DNA (ssDNA), likely facilitated by their ability to diffuse on ssDNA. Using a hybrid single-molecule method combining fluorescence and force, we probed how proteins with large binding site sizes can migrate rapidly on DNA and how protein-protein interactions and tension may modulate the motion. We observed force-induced progressive unraveling of ssDNA from the SSB surface between 1 and 6 pN, followed by SSB dissociation at ~10 pN, and obtained experimental evidence of a reptation mechanism for protein movement along DNA wherein a protein slides via DNA bulge formation and propagation. SSB diffusion persists even when bound with RecO and at forces under which the fully wrapped state is perturbed, suggesting that even in crowded cellular conditions SSB can act as a sliding platform to recruit and carry its interacting proteins for use in DNA replication, recombination and repair.  相似文献   
64.
Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl‐carrier proteins (PCPs) or acyl‐carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs. Proteins 2014; 82:1210–1218. © 2013 Wiley Periodicals, Inc.  相似文献   
65.
Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM < 1 nM at 25°C under conditions where T4 DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.  相似文献   
66.
Single-stranded DNA binding proteins (SSBs) selectively bind single-stranded DNA (ssDNA) and facilitate recruitment of additional proteins and enzymes to their sites of action on DNA. SSB can also locally diffuse on ssDNA, which allows it to quickly reposition itself while remaining bound to ssDNA. In this work, we used a hybrid instrument that combines single-molecule fluorescence and force spectroscopy to directly visualize the movement of Escherichia coli SSB on long polymeric ssDNA. Long ssDNA was synthesized without secondary structure that can hinder quantitative analysis of SSB movement. The apparent diffusion coefficient of E. coli SSB thus determined ranged from 70,000 to 170,000 nt2/s, which is at least 600 times higher than that determined from SSB diffusion on short ssDNA oligomers, and is within the range of values reported for protein diffusion on double-stranded DNA. Our work suggests that SSB can also migrate via a long-range intersegment transfer on long ssDNA. The force dependence of SSB movement on ssDNA further supports this interpretation.  相似文献   
67.
DNA ligases, critical enzymes for in vivo genome maintenance and modern molecular biology, catalyze the joining of adjacent 3′-OH and 5′-phosphorylated ends in DNA. To determine whether DNA annealing equilibria or properties intrinsic to the DNA ligase enzyme impact end-joining ligation outcomes, we used a highly multiplexed, sequencing-based assay to profile mismatch discrimination and sequence bias for several ligases capable of efficient end-joining. Our data reveal a spectrum of fidelity and bias, influenced by both the strength of overhang annealing as well as sequence preferences and mismatch tolerances that vary both in degree and kind between ligases. For example, while T7 DNA ligase shows a strong preference for ligating high GC sequences, other ligases show little GC-dependent bias, with human DNA Ligase 3 showing almost none. Similarly, mismatch tolerance varies widely among ligases, and while all ligases tested were most permissive of G:T mismatches, some ligases also tolerated bulkier purine:purine mismatches. These comprehensive fidelity and bias profiles provide insight into the biology of end-joining reactions and highlight the importance of ligase choice in application design.  相似文献   
68.
The butterfly tribe Candalidini is geographically restricted to Australia and mainland New Guinea and its adjacent islands. With 60 species and subspecies, it represents a large radiation of Papilionoidea in the Australian region. Although the species-level taxonomy is relatively well understood, the number of genera is uncertain, varying from two to eight. We reconstructed the phylogeny of the Candalidini based on a 13-locus hybrid enrichment probe set (12.8 Kbp: COI, Thiolase, CAD, CAT, DDC, EF1-a, GAPDH, HCL, IDH, MDH, RPS2, RPS5, Wingless), including all previously recognized genera and 76% (28/37) of the species-level diversity of the tribe. Maximum likelihood analysis recovered the Candalidini as a strongly supported monophyletic group. In conjunction with morphological characters, the phylogeny provided a robust framework for a revised classification in which we recognize four genera, 37 species and 23 subspecies. The genus Nesolycaena Waterhouse & R.E. Turner is considered in synonymy with Candalides Hübner, and four other genera are not recognized, namely, Holochila C. Felder, Adaluma Tindale, Zetona Waterhouse and Microscena Tite. Of the four valid genera, the absimilis group (23 species) is placed in the newly described genus Eirmocides Braby, Espeland & Müller gen. nov. (type species Candalides consimilis Waterhouse). The erinus group (six species) is assigned to Erina Swainson, which is reinstated. Chrysophanus cyprotus Olliff is assigned to Cyprotides Tite, which is also reinstated as a monotypic genus. The remaining seven species are placed in Candalides sensu stricto. Overall, we propose 47 new nomenclatural changes at the species and subspecies levels, including the synonymy of Holochila biaka Tite as Eirmocides tringa biaka (Tite) syn. nov. et comb. nov. and recognition of Candalides hyacinthinus gilesi M.R. Williams & Bollam as a distinct species Erina gilesi (M.R. Williams & Bollam stat. rev. et comb. nov. A dated phylogeny using Bayesian inference in BEAST2 and biogeographical and habitat analyses based on the DEC model in BioGeoBEARS indicated that the ancestor of the Candalidini most likely evolved in rainforest habitats of the mesic biome in situ on the Australian plate of Southern Gondwana during the Eocene (c. 43 Ma). A major period of diversification occurred in the Miocene, which coincided with aridification of the Australian continent, followed by a further episode of radiation in montane New Guinea during the Plio-Pleistocene. This published work has been registered on ZooBank by the authors: Michael Braby: http://zoobank.org/urn:lsid:zoobank.org:author:4D3A7605-EBD0-40F6-A5F2-7F67F59E3D60 ; Marianne Espeland: http://zoobank.org/urn:lsid:zoobank.org:author:00D6F9F9-3902-4A8B-846F-720AB32922A6 ; Chris Müller: http://zoobank.org/urn:lsid:zoobank.org:author:15FE5F26-7596-46C2-9697-1FD92A692D0D ; http://zoobank.org/urn:lsid:zoobank.org:pub:47D5CA34-C294-4FBD-84B6-1C2A82B7CADF .  相似文献   
69.
In cells exposed in vitro to the cytotoxic and mutagenic antitumor drug cisplatin (cis-Pt(NH3)2Cl2), various adducts with nuclear DNA are formed. A comparative study was made of the influence of temperature variation during treatment of cultured Chinese hamster ovary (CHO) cells with cisplatin on cytotoxicity, mutation induction and Pt-DNA adduct formation. Before and after treatment (1 h at 32, 37 or 40 degrees C) cells were kept at 37 degrees C. Cytotoxicity increased with temperature; D0 values were 29.6 +/- 1.6, 21.1 +/- 1.2 and 11.4 +/- 0.6 microM at 32, 37 and 40 degrees C, respectively. Pt-DNA binding to DNA at 40 degrees C was 2.0 (+/- 0.3) times as high as at 32 degrees C. This factor remained practically constant over a 24-h post-treatment incubation of the cells, during which about 60% of DNA-bound Pt were removed. As the increase in cytotoxicity between 32 and 40 degrees C was roughly in proportion to that in Pt binding, no substantial changes in the spectrum of adducts appeared to occur. The induction of DNA interstrand cross-links, studied at 32 and 40 degrees C, varied linearly with dose. Influence of temperature on cross-link formation was comparable to that on total Pt binding. Amounts of cross-links highly increased during 24 h after treatment. Plots of cross-links against survival after treatments at 32 and 40 degrees C almost coincided. Induction of 6-thioguanine-resistant (HGPRT) mutants at various cisplatin concentrations did not show a clear temperature dependency. Consequently, equitoxic treatments were significantly more mutagenic at 32 degrees C than at 40 degrees C, the opposite of what has been reported for E. coli.  相似文献   
70.
The Escherichia coli Rep helicase is a stable monomer (Mr = 72,802) in the absence of DNA; however, binding of single-stranded (ss) or duplex (ds) DNA induces Rep monomers to dimerize. Furthermore, a chemically cross-linked Rep dimer retains both its DNA-dependent ATPase and helicase activities, suggesting that the functionally active Rep helicase is a dimer (Chao, K., and Lohman, T. M. (1991) J. Mol. Biol. 221, 1165-1181). Using a modified "double-filter" nitrocellulose filter binding assay, we have examined quantitatively the equilibrium binding of Rep to a series of ss-oligodeoxynucleotides, d(pN)n (8 less than or equal to n less than or equal to 20) and two 16-base pair duplex oligodeoxynucleotides, which are short enough so that only a single Rep monomer can bind to each oligonucleotide. This strategy has enabled us to examine the linkage between DNA binding and dimerization. We also present a statistical thermodynamic model to describe the DNA-induced Rep dimerization in the presence of ss- and/or ds-oligodeoxynucleotides. We observe quantitative agreement between this model and the experimental binding isotherms and have analyzed these isotherms to obtain the seven independent interaction constants that describe Rep-DNA binding and Rep dimerization. We find that Rep monomers (P) can bind either ss-DNA (S) or ds-DNA (D) to form PS or PD, respectively, which can then dimerize to form P2S or P2D. Furthermore, both protomers of the DNA-induced Rep dimer can bind DNA to form either P2S2, P2D2 or the mixed dimer species P2SD and ss- and ds-DNA compete for the same sites on the Rep protein. When bound to DNA, the Rep dimerization constants are approximately 1-2 x 10(8) M-1 (6 mM NaCl, pH 7.5, 4 degrees C), which are greater than the dimerization constant for free Rep monomers by at least 10(4)-fold. The Rep-ss-DNA interaction constants are independent of base composition and sequence, consistent with its role as a nonspecific DNA-binding protein. Allosteric effects are associated with ss- and ds-DNA binding to the half-saturated Rep dimers, i.e. the affinity of either ss- or ds-DNA to the free promoter of a half-saturated Rep dimer is clearly influenced by the conformation of DNA bound to the first protomer. These allosteric effects further support the proposal that the Rep dimer is functionally important and that the Rep-DNA species P2S2 and P2SD may serve as useful models for intermediates that occur during DNA unwinding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号