首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15641篇
  免费   1222篇
  国内免费   7篇
  16870篇
  2024年   24篇
  2023年   96篇
  2022年   247篇
  2021年   456篇
  2020年   242篇
  2019年   312篇
  2018年   420篇
  2017年   367篇
  2016年   598篇
  2015年   866篇
  2014年   946篇
  2013年   1116篇
  2012年   1434篇
  2011年   1421篇
  2010年   882篇
  2009年   676篇
  2008年   1039篇
  2007年   923篇
  2006年   894篇
  2005年   852篇
  2004年   741篇
  2003年   623篇
  2002年   616篇
  2001年   107篇
  2000年   75篇
  1999年   107篇
  1998年   130篇
  1997年   92篇
  1996年   71篇
  1995年   54篇
  1994年   50篇
  1993年   57篇
  1992年   47篇
  1991年   29篇
  1990年   39篇
  1989年   41篇
  1988年   16篇
  1987年   22篇
  1986年   15篇
  1985年   18篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   14篇
  1980年   13篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   10篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
BACKGROUND: The principal Aflatoxin B(1) (AFB(1)) hydroxylated metabolite excreted in milk is Aflatoxin M(1) (AFM(1)) classified in group 2B by the International Agency for Research on Cancer (IARC). Human exposure to AFM(1) is due to the consumption of contaminated dairy products and partly to endogenous production through AFB(1) liver metabolism. METHODS: Since no data are available on AFM(1) embryotoxicity, its lethal and teratogenic potential was investigated using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Stage-8 blastulae were exposed to AFM(1) at 1, 4, 16, 64, and 256 microg/L concentrations until stage 47, free-swimming larva. RESULTS: A slight increase of mortality and malformed larva percents was found in AFM(1)-exposed groups but these differences were not statistically significant in comparison with the controls. CONCLUSIONS: Therefore, AFM(1) is a non-embryotoxic compound when evaluated with a FETAX model at concentrations under the conditions tested. However, AFM(1) merits further studies using mammals as experimental models to identify a possible risk during human pregnancy.  相似文献   
122.
N-terminal acetylation of proteins is a widespread and highly conserved process. Aminoacylase 1 (ACY1; EC 3.5.14) is the most abundant of the aminoacylases, a class of enzymes involved in hydrolysis of N-acetylated proteins. Here, we present four children with genetic deficiency of ACY1. They were identified through organic acid analyses using gas chromatography-mass spectrometry, revealing increased urinary excretion of several N-acetylated amino acids, including the derivatives of methionine, glutamic acid, alanine, leucine, glycine, valine, and isoleucine. Nuclear magnetic resonance spectroscopy analysis of urine samples detected a distinct pattern of N-acetylated metabolites, consistent with ACY1 dysfunction. Functional analyses of patients' lymphoblasts demonstrated ACY1 deficiency. Mutation analysis uncovered recessive loss-of-function or missense ACY1 mutations in all four individuals affected. We conclude that ACY1 mutations in these children led to functional ACY1 deficiency and excretion of N-acetylated amino acids. Questions remain, however, as to the clinical significance of ACY1 deficiency. The ACY1-deficient individuals were ascertained through urine metabolic screening because of unspecific psychomotor delay (one subject), psychomotor delay with atrophy of the vermis and syringomyelia (one subject), marked muscular hypotonia (one subject), and follow-up for early treated biotinidase deficiency and normal clinical findings (one subject). Because ACY1 is evolutionarily conserved in fish, frog, mouse, and human and is expressed in the central nervous system (CNS) in human, a role in CNS function or development is conceivable but has yet to be demonstrated. Thus, at this point, we cannot state whether ACY1 deficiency has pathogenic significance with pleiotropic clinical expression or is simply a biochemical variant. Awareness of this new genetic entity may help both in delineating its clinical significance and in avoiding erroneous diagnoses.  相似文献   
123.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.  相似文献   
124.
The blood-brain barrier contributes to maintain brain cholesterol metabolism and protects this uniquely balanced system from exchange with plasma lipoprotein cholesterol. Brain capillary endothelial cells, representing a physiological barrier to the central nervous system, express apolipoprotein A-I (apoA-I, the major high-density lipoprotein (HDL)-associated apolipoprotein), ATP-binding cassette transporter A1 (ABCA1), and scavenger receptor, class B, type I (SR-BI), proteins that promote cellular cholesterol mobilization. Liver X receptors (LXRs) and peroxisome-proliferator activated receptors (PPARs) are regulators of cholesterol transport, and activation of LXRs and PPARs has potential therapeutic implications for lipid-related neurodegenerative diseases. To clarify the functional impact of LXR/PPAR activation, sterol transport along the: (i) ABCA1/apoA-I and (ii) SR-BI/HDL pathway was investigated in primary, polarized brain capillary endothelial cells, an in vitro model of the blood-brain barrier. Activation of LXR (24(S)OH-cholesterol, TO901317), PPARalpha (bezafibrate, fenofibrate), and PPARgamma (troglitazone, pioglitazone) modulated expression of apoA-I, ABCA1, and SR-BI on mRNA and/or protein levels without compromising transendothelial electrical resistance or tight junction protein expression. LXR-agonists and troglitazone enhanced basolateral-to-apical cholesterol mobilization in the absence of exogenous sterol acceptors. Along with the induction of cell surface-located ABCA1, several agonists enhanced cholesterol mobilization in the presence of exogenous apoA-I, while efflux of 24(S)OH-cholesterol (the major brain cholesterol metabolite) in the presence of exogenous HDL remained unaffected. Summarizing, in cerebrovascular endothelial cells apoA-I, ABCA1, and SR-BI represent drug targets for LXR and PPAR-agonists to interfere with cholesterol homeostasis at the periphery of the central nervous system.  相似文献   
125.
Jorge Lobo’s disease (JLD) is a chronic infection that affects the skin and subcutaneous tissues. Its etiologic agent is the fungus Lacazia loboi. Lesions are classified as localized, multifocal, or disseminated, depending on their location. Early diagnosis and the surgical removal of lesions are the best therapeutic options currently available for JLD. The few studies that evaluate the immunological response of JLD patients show a predominance of Th2 response, as well as a high frequency of TGF-β and IL-10 positive cells in the lesions; however, the overall immunological status of the lesions in terms of their T cell phenotype has yet to be determined. Therefore, the objective of this study was to evaluate the pattern of Th1, Th2, Th17 and regulatory T cell (Treg) markers mRNA in JLD patients by means of real-time PCR. Biopsies of JLD lesions (N = 102) were classified according to their clinical and histopathological features and then analyzed using real-time PCR in order to determine the expression levels of TGF-β1, FoxP3, CTLA4, IKZF2, IL-10, T-bet, IFN-γ, GATA3, IL-4, IL-5, IL-13, IL-33, RORC, IL-17A, IL-17F, and IL-22 and to compare these levels to those of healthy control skin (N = 12). The results showed an increased expression of FoxP3, CTLA4, TGF-β1, IL-10, T-bet, IL-17F, and IL-17A in lesions, while GATA3 and IL-4 levels were found to be lower in diseased skin than in the control group. When the clinical forms were compared, TGF-β1 was found to be highly expressed in patients with a single localized lesion while IL-5 and IL-17A levels were higher in patients with multiple/disseminated lesions. These results demonstrate the occurrence of mixed T helper responses and suggest the dominance of regulatory T cell activity, which could inhibit Th-dependent protective responses to intracellular fungi such as L. loboi. Therefore, Tregs may play a key role in JLD pathogenesis.  相似文献   
126.
127.

Corrigendum

Use of gentian violet to differentiate in vitro and ex vitro- formed roots during acclimatization of grapevine  相似文献   
128.
Lines of mice were obtained by selective breeding for maximum (AIRmax) or minimum (AIRmin) acute inflammation. They present distinct neutrophil influx and show frequency disequilibrium of the solute carrier family 11a member 1 (Slc11a1) alleles. This gene is involved in ion transport at the endosomes within macrophages and neutrophils, interfering in their activation. Homozygous AIRmax and AIRmin sublines for the Slc11a1 gene were produced to examine the interaction of this gene with the acute inflammatory loci. The present work investigated wound-healing traits in AIRmax and AIRmin mice, in F1 and F2 intercrosses, and in Slc11a1 sublines. Two-millimeter ear punches were made in the mice and hole closure was measured during 40 days. AIRmax mice demonstrated significant tissue repair while AIRmin mice did not. Significant differences between the responses of male and female mice were also observed. Wound-healing traits demonstrated a correlation with neutrophil influx in F2 populations. AIRmax SS showed higher ear-wound closure than AIRmax RR mice, suggesting that the Slc11a1 S allele favored ear tissue repair. QTL analysis has detected two inflammatory loci modulating ear wound healing on chromosomes 1 and 14. These results suggest the involvement of the acute inflammation modifier QTL in the wound-healing phenotype.  相似文献   
129.

When modeling infectious diseases, it is common to assume that infection-derived immunity is either (1) non-existent or (2) perfect and lifelong. However there are many diseases in which infection-derived immunity is known to be present but imperfect. There are various ways in which infection-derived immunity can fail, which can ultimately impact the probability that an individual be reinfected by the same pathogen, as well as the long-run population-level prevalence of the pathogen. Here we discuss seven different models of imperfect infection-derived immunity, including waning, leaky and all-or-nothing immunity. For each model we derive the probability that an infected individual becomes reinfected during their lifetime, given that the system is at endemic equilibrium. This can be thought of as the impact that each of these infection-derived immunity failures have on reinfection. This measure is useful because it provides us with a way to compare different modes of failure of infection-derived immunity.

  相似文献   
130.
The metabolic pathways leading to the synthesis of bacterial glycogen involve the action of several enzymes, among which glycogen synthase (GS) catalyzes the elongation of the α-1,4-glucan. GS from Agrobacterium tumefaciens uses preferentially ADPGlc, although UDPGlc can also be used as glycosyl donor with less efficiency. We present here a continuous spectrophotometric assay for the determination of GS activity using ADP- or UDPGlc. When ADPGlc was used as the substrate, the production of ADP is coupled to NADH oxidation via pyruvate kinase (PK) and lactate dehydrogenase (LDH). With UDPGlc as substrate, UDP was converted to ADP via adenylate kinase and subsequent coupling to PK and LDH reactions. Using this assay, we determined the kinetic parameters of GS and compared them with those obtained with the classical radiochemical method. For this purpose, we improved the expression procedure of A. tumefaciens GS using Escherichia coli BL21(DE3)-RIL cells. This assay allows the continuous monitoring of glycosyltransferase activity using ADPGlc or UDPGlc as sugar-nucleotide donors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号