首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
  2022年   4篇
  2021年   3篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   12篇
  2001年   7篇
  1981年   1篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
21.
Effects of light intensity, nitrogen availability, and inoculum density on growth and the content of esterified fatty acids (FA), chlorophylls, and carotenoids in Desmodesmus sp. 3Dp86E-1 chlorophyte alga isolated from the White Sea hydroid Dynamena pumila L. were investigated. The growth of algae in the complete BG-11 medium was not limited by irradiances up to 480 μE/(m2 s) PAR but depended on the inoculum density. Under nitrogen starvation conditions, high-intensity light retarded growth of the microalga; this effect was less pronounced in the cultures initiated at high inoculum densities. The highest FA percentage in biomass (30% at the 3rd day of cultivation) was detected in nitrogen-starving cultures grown under high light conditions; however, the highest volumetric FA content (0.25 g/L) was attained on a complete medium at 480 μE/(m2 s). An increase in the content of oleic acid (18:1) on the background of a decrease in linolenic acid (18:3) was characteristic of the microalga under stress conditions. The microalga was found to be non-carotenogenic. Nitrogen starvation brought about a dramatic decrease in chlorophyll content on the background of relatively constant carotenoid content. On nitrogen-deplete medium, the high light did not trigger the adaptive response of the pigment apparatus. The changes in absorption spectra of Desmodesmus sp. 3Dp86E-1 cell suspensions reflected the increase in relative contribution of carotenoids to light absorption by the microalgal cells; these changes were tightly related with FA accumulation. The mechanisms of acclimation of Desmodesmus sp. 3Dp86E-1 to high light and nitrogen starvation are discussed in view of possible biotechnological applications of this alga.  相似文献   
22.
Melafen stimulating effect on cell growth of cyanobacteria Synechococcus sp. PCC 6301 cultures amounted to 30–45% at 1000 lx illumination. The melafen effect decreased when cell cultures were exposed at the illumination of the saturation range (4000 lx). Growth rate and biomass increase of Anabaena variabilis, as well as the observed melafen stimulating effect, were higher on nitrogen-free medium compared to a nitrogen-containing one by 20–25%. We conclude that melafen activates photosynthetic processes and, probably, stimulates fixation of the atmospheric nitrogen in the cells. Opposite to the stimulating effect of melafen, ions of the heavy metal Cd2+ inhibited both biomass increase and the average number of the cells in the cyanobacteria A. variabilis colonies. The melafen added to the medium together with the Cd2+ ions decreased their negative effect. The other heavy metal ions, Cu2+, inhibited the growth of the cyanobacteria Synechococcus sp. PCC 6301 and green microalgae Chlorella vulgaris but had a stimulation effect on carbohydrate excretion by the cell cultures. Again, the melafen decreased the toxic effect of Cu2+ in this case. We suppose that melafen has an antistress activity at heavy metal ions presence and reduces their toxic effect on growth of phototrophic microorganisms.  相似文献   
23.
Journal of Applied Phycology - A novel chlorophyte algae strain with outstanding resilience to high inorganic phosphate (Pi) concentrations in the medium was isolated from a...  相似文献   
24.
Photosynthesis Research - Photosystem I (PSI) generates the most negative redox potential found in nature, and the performance of solar energy conversion into alternative energy sources in...  相似文献   
25.
Morphological, biochemical, and molecular genetic studies of green microalgae from the collection of cyanobacteria, algae, and algal parasites of St. Petersburg State University (CALU) (presumably belonging to the Parietochloris genus) were conducted in order to estimate biotechnological potential and clarify the phylogenetic position. It was determined that the studied strains have a close relationship to two genera from different classes (Lobosphaera (Trebouxiaceae) and Deasonia (Actinochloridaceae)) and can be of biotechnological interest as producers of valuable polyunsaturated fatty acids (especially arachidonic, linoleic, and α-linolenic).  相似文献   
26.
Associative cyanobacteria were isolated from the rhizoplane and velamen of the aerial roots of the epiphytic orchids Acampe papillosa, Phalaenopsis amabilis, and Dendrobium moschatum and from the substrate roots of Acampe papillosa and Dendrobium moschatum. Cyanobacteria were isolated on complete and nitrogen-free variants of BG-11 medium. On all media and in all samples, cyanobacteria of the genus Nostoc predominated. Nostoc, Anabaena, and Calothrix were isolated from the surface of the A. papillosa aerial roots, whereas the isolates from the substrate roots were Nostoc, Oscillatoria, and representatives of the LPP-group (Lyngbia, Phormidium, and Plectonema, incapable of nitrogen fixation). On the D. moschatum substrate roots, Nostoc and LPP-group representatives were also found, as well as Fischerella. On the aerial roots of P. amabilis and D. phalaenopsis grown in a greenhouse simulating the climate of moist tropical forest, cyanobacteria were represented by Nostoc, LPP-group, and Scytonema in the D. phalaenopsis and by Nostoc, Scytonema, Calothrix, Spirulina, Oscillatoria, and the LPP-group in P. amabilis. For D. moschatum, the spectra of cyanobacteria populating the substrate root zhizophane and the substrate (pine bark) were compared. In the parenchyma of the aerial roots of P. amabilis, fungal hyphae and/or their half-degraded remains were detected, which testifies to the presence of mycorrhizal fungi this plant. This phenomenon is attributed to the presence of a sheath formed by cyanobacteria and serving as a substrate for fungi.  相似文献   
27.
Here we present a brief account of current data on immobilization of oxygenic phototrophic microorganisms—cyanobacteria and eukaryotic microalgae—in natural and artificial experimental systems. We emphasize that immobilization e.g. in biofilms is a basic, widespread in nature strategy ensuring the survival of microorganisms. Accordingly, the artificially immobilized microalgal cells might be considered as a special group of biomimetic materials. Special attention is paid to the effect(s) of different immobilization on the physiology of microalgal cells and their stress tolerance as well as productivity of microalgal cultures. A comparison of the advantages and drawbacks of different immobilization techniques and cell carriers is presented. The review concludes with outlook on the possibilities of using of the immobilized phototrophic cells in biotechnology. Specific areas include (but not limited to) the biomass and metabolites production and harvesting, removal of heavy metals, biocapture of nutrients from wastewater and destroying of organic pollutants are explored.  相似文献   
28.
Chekanov  K.  Vasilieva  S.  Solovchenko  A.  Lobakova  E. 《Photosynthetica》2018,56(4):1268-1277

The microalga Haematococcus pluvialis is a biotechnologically important microorganism producing a ketocarotenoid astaxanthin. Haematococcus exists either as metabolically active vegetative cells with a high chlorophyll content or astaxanthin-rich haematocysts (aplanospores). This microalga featuring outstanding tolerance to a wide range of adverse conditions is a highly suitable model for studies of freezing tolerance in phototrophs. The retention of H. pluvialis cell viability after freezing–thawing is ascribed to elevated antioxidant enzyme activity and high ketocarotenoid content. However, we report that only haematocysts characterized by a lower photosynthetic activity were resistant to freezing–thawing even without cryoprotectant addition. The key factors of haematocyst freezing tolerance were assumed to be a low water content, rigid cell walls, reduction of the membranous structures, photosynthesis downregulation, and low chlorophyll content. Collectively, viability of Haematoccus after freezing–thawing can be improved by forcing the transition of vegetative cells to freeze-tolerant haematocysts before freezing.

  相似文献   
29.
The purpose of this work was to investigate the sorbents on the basis of polyethylenimine (PEI) intended for collecting biomass of microalgae (MA). For this purpose, a series of porous and insoluble polymeric materials were synthesized by cross-linking of PEI with epichlorohydrine. The analysis of kinetics and efficiency of immobilization assessed for the model culture Chlorella vulgaris, revealed that already within 3 h of incubation, 39–75% of MA cells attached to the surface of tested sorbents. It was shown that on the initial stage of immobilization the sorption activity of polymeric materials depended on the “PEI:crosslinker” ratio. One of the tested sorbents was additionally quartenized by alkylation with dimethyl sulphate resulting in sharp increase of its sorption activity. The estimation of the MA desorption from polymeric surface showed that most Ch. vulgaris cells were practically irreversibly immobilized on all tested sorbents based on the PEI cross-linked with epichlorohydrine.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号