首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   756篇
  免费   75篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   3篇
  2019年   8篇
  2018年   13篇
  2017年   13篇
  2016年   21篇
  2015年   32篇
  2014年   38篇
  2013年   41篇
  2012年   55篇
  2011年   53篇
  2010年   30篇
  2009年   38篇
  2008年   42篇
  2007年   31篇
  2006年   34篇
  2005年   30篇
  2004年   29篇
  2003年   23篇
  2002年   42篇
  2001年   23篇
  2000年   18篇
  1999年   13篇
  1998年   10篇
  1997年   12篇
  1996年   8篇
  1995年   9篇
  1994年   3篇
  1993年   7篇
  1992年   12篇
  1991年   13篇
  1990年   8篇
  1989年   14篇
  1988年   13篇
  1987年   9篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   8篇
  1982年   4篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1973年   2篇
  1972年   2篇
  1967年   2篇
  1958年   1篇
排序方式: 共有831条查询结果,搜索用时 218 毫秒
21.
22.
Rapid adaptation to global change can counter vulnerability of species to population declines and extinction. Theoretically, under such circumstances both genetic variation and phenotypic plasticity can maintain population fitness, but empirical support for this is currently limited. Here, we aim to characterize the role of environmental and genetic diversity, and their prior evolutionary history (via haplogroup profiles) in shaping patterns of life history traits during biological invasion. Data were derived from both genetic and life history traits including a morphological analysis of 29 native and invasive populations of topmouth gudgeon Pseudorasbora parva coupled with climatic variables from each location. General additive models were constructed to explain distribution of somatic growth rate (SGR) data across native and invasive ranges, with model selection performed using Akaike's information criteria. Genetic and environmental drivers that structured the life history of populations in their native range were less influential in their invasive populations. For some vertebrates at least, fitness‐related trait shifts do not seem to be dependent on the level of genetic diversity or haplogroup makeup of the initial introduced propagule, nor of the availability of local environmental conditions being similar to those experienced in their native range. As long as local conditions are not beyond the species physiological threshold, its local establishment and invasive potential are likely to be determined by local drivers, such as density‐dependent effects linked to resource availability or to local biotic resistance.  相似文献   
23.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
24.
25.

Background

Understanding the emergence and spread of multidrug-resistant tuberculosis (MDR-TB) is crucial for its control. MDR-TB in previously treated patients is generally attributed to the selection of drug resistant mutants during inadequate therapy rather than transmission of a resistant strain. Traditional genotyping methods are not sufficient to distinguish strains in populations with a high burden of tuberculosis and it has previously been difficult to assess the degree of transmission in these settings. We have used whole genome analysis to investigate M. tuberculosis strains isolated from treatment experienced patients with MDR-TB in Uganda over a period of four years.

Methods and Findings

We used high throughput genome sequencing technology to investigate small polymorphisms and large deletions in 51 Mycobacterium tuberculosis samples from 41 treatment-experienced TB patients attending a TB referral and treatment clinic in Kampala. This was a convenience sample representing 69% of MDR-TB cases identified over the four year period. Low polymorphism was observed in longitudinal samples from individual patients (2-15 SNPs). Clusters of samples with less than 50 SNPs variation were examined. Three clusters comprising a total of 8 patients were found with almost identical genetic profiles, including mutations predictive for resistance to rifampicin and isoniazid, suggesting transmission of MDR-TB. Two patients with previous drug susceptible disease were found to have acquired MDR strains, one of which shared its genotype with an isolate from another patient in the cohort.

Conclusions

Whole genome sequence analysis identified MDR-TB strains that were shared by more than one patient. The transmission of multidrug-resistant disease in this cohort of retreatment patients emphasises the importance of early detection and need for infection control. Consideration should be given to rapid testing for drug resistance in patients undergoing treatment to monitor the emergence of resistance and permit early intervention to avoid onward transmission.  相似文献   
26.
miR-33 and miR-122 are major regulators of lipid metabolism in the liver, and their deregulation has been linked to the development of metabolic diseases such as obesity and metabolic syndrome. However, the biological importance of these miRNAs has been defined using genetic models. The aim of this study was to evaluate whether the levels of miR-122 and miR-33a in rat liver correlate with lipemia in nutritional models. For this purpose, we analyzed the levels of miRNA-33a and miR-122 in the livers of dyslipidemic cafeteria diet-fed rats and of cafeteria diet-fed rats supplemented with proanthocyanidins and/or ω-3 PUFAs because these two dietary components are well-known to counteract dyslipidemia. The results showed that the dyslipidemia induced in rats that were fed a cafeteria diet resulted in the upregulation of miR-33a and miR-122 in the liver, whereas the presence of proanthocyanidins and/or ω-3 PUFAs counteracted the increase of these two miRNAs. However, srebp2, the host gene of miR-33a, was significantly repressed by ω-3 PUFAs but not by proanthocyanidins. Liver mRNA levels of the miR-122 and miR-33a target genes, fas and pparβ/δ, cpt1a and abca1, respectively, were consistent with the expression of these two miRNAs under each condition. Moreover, the miR-33a and abca1 levels were also analyzed in PBMCs. Interestingly, the miR-33a levels evaluated in PBMCs under each condition were similar to the liver levels but enhanced. This demonstrates that miR-33a is expressed in PBMCs and that these cells can be used as a non-invasive way to reflect the expression of this miRNA in the liver. These findings cast new light on the regulation of miR-33a and miR-122 in a dyslipidemic model of obese rats and the way these miRNAs are modulated by dietary components in the liver and in PBMCs.  相似文献   
27.
28.
The lethal yellowing (LY) disease and LY‐type syndromes affecting several palm species are associated with 16SrIV phytoplasmas in the Americas. In Mexico, palms of the species Roystonea regia and the native Acrocomia mexicana were found to exhibit LY‐type symptoms, including leaf decay, starting with mature leaves, necrosis and atrophy of inflorescences. DNA extracts obtained from these palms could be amplified by nested‐PCR using phytoplasma‐universal primer pair P1/P7 followed by LY‐group‐specific primer pair LY16Sr/LY16Sf. Blast analysis of the sequences obtained revealed an identity of 100% for R. regia and 99.27% for A. mexicana with 16SrIV‐A strain associated with LY in Florida, USA (Acc. AF498309 ). Computer‐simulated RFLP analysis showed that the patterns for the phytoplasma DNA of the two palm species were highly similar to that for 16SrIV subgroup A strain. A neighbour‐joining tree was constructed, and the sequences of the two palm species clustered in the same clade of group 16SrIV subgroup A. The results therefore support that LY‐type syndromes observed in palms of R. regia and A. mexicana in the Yucatan region of Mexico are associated with 16SrIV subgroup A phytoplasmas.  相似文献   
29.
30.
Tumor ablation with irreversible electroporation   总被引:1,自引:0,他引:1  
We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 micros at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号