首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   31篇
  2023年   5篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   13篇
  2017年   10篇
  2016年   18篇
  2015年   31篇
  2014年   17篇
  2013年   31篇
  2012年   45篇
  2011年   28篇
  2010年   29篇
  2009年   16篇
  2008年   29篇
  2007年   18篇
  2006年   9篇
  2005年   13篇
  2004年   19篇
  2003年   20篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1976年   3篇
  1972年   1篇
排序方式: 共有397条查询结果,搜索用时 31 毫秒
21.
Bioactive proanthocyanidins have been reported to have several beneficial effects on health in relation to metabolic syndrome, type 2 diabetes, and cardiovascular disease. We studied the effect of grape seed proanthocyanidin extract (GSPE) in rats fed a high fat diet (HFD). This is the first study of the effects of flavonoids on the liver proteome of rats suffering from metabolic syndrome. Three groups of rats were fed over a period of 13 weeks either a chow diet (control), an HFD, or a high fat diet supplemented for the last 10 days with GSPE (HFD + GSPE). The liver proteome was fractionated, using a Triton X-114-based two-phase separation, into soluble and membrane protein fractions so that total proteome coverage was considerably improved. The data from isobaric tag for relative and absolute quantitation (iTRAQ)-based nano-LC-MS/MS analysis revealed 90 proteins with a significant (p < 0.05) minimal expression difference of 20% due to metabolic syndrome (HFD versus control) and 75 proteins due to GSPE treatment (HFD + GSPE versus HFD). The same animals have previously been studied (Quesada, H., del Bas, J. M., Pajuelo, D., Díaz, S., Fernandez-Larrea, J., Pinent, M., Arola, L., Salvadó, M. J., and Bladé, C. (2009) Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int. J. Obes. 33, 1007–1012), and GSPE was shown to correct dyslipidemia observed in HFD-fed rats probably through the repression of hepatic lipogenesis. Our data corroborate those findings with an extensive list of proteins describing the induction of hepatic glycogenesis, glycolysis, and fatty acid and triglyceride synthesis in HFD, whereas the opposite pattern was observed to a large extent in GSPE-treated animals. GSPE was shown to have a wider effect than previously thought, and putative targets of GSPE involved in the reversal of the symptoms of metabolic syndrome were revealed. Some of these novel candidate proteins such as GFPT1, CD36, PLAA (phospholipase A2-activating protein), METTL7B, SLC30A1, several G signaling proteins, and the sulfide-metabolizing ETHE1 and SQRDL (sulfide-quinone reductase-like) might be considered as drug targets for the treatment of metabolic syndrome.An increase in high calorie diets and a sedentary lifestyle are considered the key factors in explaining the epidemic rise in obesity in developed countries (1). Obese patients, especially those with abdominal obesity due to visceral adipose tissue accumulation, run a higher risk of impaired glucose tolerance, which frequently evolves into insulin resistance (2). Obesity and insulin resistance are frequently associated with hypertension, proatherogenic dyslipidemia, chronic inflammation, a prothrombotic state, and recently also fatty liver (3), conditions that together make up what is known as metabolic syndrome and lead to an increased risk of developing cardiovascular disease (CVD)1 and type 2 diabetes (4). Conversely, some dietary patterns and specific food components have been associated with a lower prevalence of obesity, type 2 diabetes, and CVD. In this sense, the traditional Mediterranean diet (characterized by a high fiber content, low glycemic index carbohydrates, unsaturated fats, vitamins, and antioxidant polyphenols) has been linked to a lower incidence of CVD, obesity, and type 2 diabetes (58). Moreover, the French population presents a very low prevalence of death due to CVD despite consuming a diet rich in saturated fats and cholesterol. This phenomenon, known as “the French paradox” (9), has been ascribed to the moderate consumption of red wine and specifically to its content of polyphenols (1012).Polyphenols include flavonoids of which flavan-3-ols and their oligomeric forms (proanthocyanidins) have been reported to exhibit several beneficial health effects by acting as antioxidant, anticarcinogen, cardioprotective, antimicrobial, antiviral, and neuroprotective agents (for a review, see Ref. 13). Specifically, grape and wine proanthocyanidins have a cardioprotective effect through increasing plasma high density lipoprotein cholesterol, decreasing low density lipoprotein-derived atherosclerotic foam cell lesions, attenuating oxidant formation by quenching harmful radicals, increasing endothelium-dependent vasorelaxation, etc. (13). In this context, our group has been working for years on the effect of a grape seed proanthocyanidin extract (GSPE) (containing monomers and oligomers of flavan-3-ols) in relation to metabolic syndrome. In previous works, we have found that GSPE prevents oxidative injury (14), has an insulinomimetic effect on adipocytes and adipose tissue (15), modulates glucose homeostasis (16), decreases plasma levels of triglycerides (TGs) and apolipoprotein B in normolipidemic rats (17), and acts as an in vitro (18, 19) and in vivo (20) anti-inflammatory. We have also shown that GSPE decreases postprandial plasma TG and apolipoprotein B in mice through a hepatic induction of a farnesoid X receptor (FXR) and the small heterodimer partner (SHP) that in turn down-regulates SREBP1c and other lipogenic genes in the liver (21, 22). Furthermore, we have demonstrated that the molecules responsible for the reduced TG synthesis in HepG2 cells treated with GSPE are the sum of a proanthocyanidins trimer and a dimer gallate because they reproduce the GSPE effect (23).The effect of GSPE on metabolic syndrome has been studied in our laboratory by feeding rats a “cafeteria diet.” This diet is an experimental model of a western high sugar and high fat diet extensively used to produce obesity in rats because its palatability induces the animals to increase their energy intake (24). In a recent study conducted by our group (25) as well as this study, the rats were fed a high fat diet (HFD) (cafeteria diet) for 13 weeks, and one group of the animals was treated with a daily dose of GSPE (25 mg/kg of body weight) for the last 10 days (HFD + GSPE). In that study, HFD was shown to cause the animals to be overweight and to suffer from fatty liver, dyslipidemia, and hepatic overexpression of key genes involved in lipogenesis and VLDL assembly, whereas GSPE treatment corrected dyslipidemia and down-regulated some of the genes up-regulated by HFD (25).To better investigate the mechanism behind the changes observed in HFD- and HFD + GSPE-fed rats, we analyzed protein expression in the liver. Because GSPE treatment and obesity have multiple effects, a proteome-wide approach is needed to map proteins from different pathways. Proteomics studies related to obesity, metabolic syndrome, fatty liver, or insulin resistance have previously been performed on the liver (2632). Two such studies looked into the effects of flavonoids in mouse livers (33, 34), but to our knowledge, this is the first hepatic proteome analysis of the effect of flavonoids in rats suffering from metabolic syndrome. To improve the proteome coverage of the complex liver samples, we performed a proteome fractionation according to protein solubility using a two-phase detergent protocol (35). This strategy was advantageous because it captured membrane proteins that otherwise would have been difficult to detect. The resulting soluble and membrane protein fractions were digested, iTRAQ-labeled, fractionated according to isoelectric point, and analyzed by nano-LC-MS/MS. The proteomics study presented here reports a differential expression due to HFD or HFD + GSPE for approximately 140 proteins, indicating that both conditions were potent modifiers of the liver proteome. We have focused on the sugar and lipid metabolism data, which confirmed the repression of hepatic lipogenesis in HFD + GSPE rats. Additionally, new proteins have been revealed as putative GSPE targets.  相似文献   
22.
The aim of this study was to investigate the effects of the apolipoprotein A5 (APOA5) 1131T>C gene variant on vitamin E status and lipid profile. The gene variant was determined in 297 healthy nonsmoking men aged 20-75 years and recruited in the VITAGE Project. Effects of the genotype on vitamin E in plasma, LDL, and buccal mucosa cells (BMC) as well as on cholesterol and triglyceride (TG) concentrations in plasma and apolipoprotein A-I (apoA-I), apoB, apoE, apoC-III, and plasma fatty acids were determined. Plasma malondialdehyde concentrations as a marker of in vivo lipid peroxidation were determined. C allele carriers showed significantly higher TG, VLDL, and LDL in plasma, higher cholesterol in VLDL and intermediate density lipoprotein, and higher plasma fatty acids. Plasma alpha-tocopherol (but not gamma-tocopherol, LDL alpha- and gamma-tocopherol, or BMC total vitamin E) was increased significantly in C allele carriers compared with homozygote T allele carriers (P = 0.02), but not after adjustment for cholesterol or TG. Plasma malondialdehyde concentrations did not differ between genotypes. In conclusion, higher plasma lipids in the TC+CC genotype are efficiently protected against lipid peroxidation by higher alpha-tocopherol concentrations. Lipid-standardized vitamin E should be used to reliably assess vitamin E status in genetic association studies.  相似文献   
23.
Biodiversity and Conservation - Biodiversity keeps declining in the European Union despite the large conservation effort done over the last decades. The Biodiversity Strategy for 2030 aims to...  相似文献   
24.
Long‐term biodiversity monitoring data are mainly used to estimate changes in species occupancy or abundance over time, but they may also be incorporated into predictive models to document species distributions in space. Although changes in occupancy or abundance may be estimated from a relatively limited number of sampling units, small sample size may lead to inaccurate spatial models and maps of predicted species distributions. We provide a methodological approach to estimate the minimum sample size needed in monitoring projects to produce accurate species distribution models and maps. The method assumes that monitoring data are not yet available when sampling strategies are to be designed and is based on external distribution data from atlas projects. Atlas data are typically collected in a large number of sampling units during a restricted timeframe and are often similar in nature to the information gathered from long‐term monitoring projects. The large number of sampling units in atlas projects makes it possible to simulate a broad gradient of sample sizes in monitoring data and to examine how the number of sampling units influences the accuracy of the models. We apply the method to several bird species using data from a regional breeding bird atlas. We explore the effect of prevalence, range size and habitat specialization of the species on the sample size needed to generate accurate models. Model accuracy is sensitive to particularly small sample sizes and levels off beyond a sufficiently large number of sampling units that varies among species depending mainly on their prevalence. The integration of spatial modelling techniques into monitoring projects is a cost‐effective approach as it offers the possibility to estimate the dynamics of species distributions in space and over time. We believe our innovative method will help in the sampling design of future monitoring projects aiming to achieve such integration.  相似文献   
25.
At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline.  相似文献   
26.
27.
The recent application of mass spectrometry to the study of the sperm cell has led to an unprecedented capacity for identification of sperm proteins in a variety of species. Knowledge of the proteins that make up the sperm cell represents the first step towards understanding its normal function and the molecular anomalies associated with male infertility. The present review starts with an introduction of the sperm cell biology and is followed by the consideration of the methodological key aspects to be aware of during sample sourcing and preparation, including data interpretation. It then overviews the initiatives developed so far towards the completion of the sperm proteome, with a particular focus in human but with the inclusion of some comments on different model species. Finally, all studies performing differential proteomics in infertile patients are reviewed, pointing to future potential applications.  相似文献   
28.
Energy or nutritional constraints associated to female dietary shifts during the clutch production period may play a role in generating intra‐clutch egg size variation in yellow‐legged gulls Larus michahellis. To explore this possibility, we determined albumen δ13C and δ15N values in three‐egg clutches (modal clutch size) from three different breeding episodes: Ebro Delta 2004 and 2006, and Columbretes Islands 2004. Rather than a shift in females’ diet, consistent intra‐clutch patterns of variation in egg size and albumen isotopic values (particularly in the case of albumen δ13C, which values held constant throughout the laying sequence) pointed to an intrinsic mechanism as the most feasible cause for the relatively smaller size of third/last‐laid eggs. However, diet “quality” for breeding females seemed to affect intra‐clutch egg size variation. In particular, a deficit of specific nutrients for egg formation associated to refuse scraps exploitation (as suggested by depleted albumen isotopic values) likely resulted in the more apparent intra‐clutch egg size profile for the Ebro Delta 2004. In the absence of dietary shifts, the observation of consistently higher δ15N values for third‐albumens suggested a greater contribution of endogenous resources to their synthesis, as conversion of stored reserves into egg proteins results in greater isotopic fractionation, thereby yielding enriched isotopic signatures (particularly for δ15N that shows greater isotopic fractionation with respect to that commonly assumed for δ13C). We point to reabsorbed material derived from the hormonally‐mediated regression of the female reproductive system (which is likely the intrinsic mechanisms resulting in the intra‐clutch pattern of egg size variation: the hormonal hypothesis) as the most feasible endogenous source of nutrients for the synthesis of last‐laid eggs, as optimize reproductive investment and maximize female fitness.  相似文献   
29.
Autotrophic nitrite removal in the cathode of microbial fuel cells   总被引:3,自引:0,他引:3  
Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC.  相似文献   
30.
Striatal adenosine A(2A) receptors (A(2A)Rs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D(2) receptors (D(2)Rs). A(2A)Rs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1) receptors (A(1)Rs). It has been hypothesized that postsynaptic A(2A)R antagonists should be useful in Parkinson's disease, while presynaptic A(2A)R antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2A)R antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2A)R-D(2)R and A(1)R-A(2A)R heteromers to determine possible differences in the affinity of these compounds for different A(2A)R heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2A)R when co-expressed with D(2)R than with A(1)R. KW-6002 showed the best relative affinity for A(2A)R co-expressed with D(2)R than co-expressed with A(1)R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号