首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   8篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2015年   3篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有76条查询结果,搜索用时 343 毫秒
61.
62.
63.
64.
Tissue pro-oxidant generation under standard conditions is equilibrated with the activity of intra- and extracellular antioxidants; thus some optimal level of pro-oxidant-antioxidant balance is created. Oxygen-dependent nature of lipid peroxidation processes implicates its complex multilevel regulatory system, where systemic mechanisms may dominate upon the intracellular ones. This suggests a necessity in the investigation of body oxygen transport not only in terms of the requirements of energetic metabolism in electron acceptor but also as a physiological mechanism for antioxidant defense and, in general, as the mechanism involved in a maintenance of pro-oxidant-antioxidant balance. The hemoglobin-oxygen affinity has a special place in a complex antioxidant system hierarchy, because it determines the condition of oxygen diffusion to tissues and ultimately the value of tissue pO2. The blood oxygen-binding properties under different hyperthermic states with or without a correction of hemoglobin-oxygen affinity and L-arginine-NO pathway were shown to be involved into a complex integration with elements of different functional systems and to play an important role in complex physiologic mechanisms for the maintenance of pro-oxidant-antioxidant balance. The oxyhemoglobin dissociation curve shift leftwards may have an adaptive effect under conditions of low oxygen utilization because of limitation of oxygen fraction spent on a free radical generation and the following initiation of lipid peroxidation processes.  相似文献   
65.
During meiotic prophase homologous chromosomes find each other and pair. Then they synapse, as the linear protein core (axial element or lateral element) of each homologous chromosome is joined together by a transverse central element, forming the tripartite synaptonemal complex (SC). Ten uncloned Zea mays mutants in our collection were surveyed by transmission electron microscopy by making silver-stained spreads of SCs to identify mutants with non-homologous synapsis or improper synapsis. To analyse the mutants further, zyp1, the maize orthologue of the Arabidopsis central element component ZYP1 was cloned and an antibody was made against it. Using antibodies against ZYP1 and the lateral element components AFD1 and ASY1, it was found that most mutants form normal SCs but are defective in pairing. The large number of non-homologous synapsis mutants defective in pairing illustrates that synapsis and pairing can be uncoupled. Of the ten mutants studied, only dsy2 undergoes normal homologous chromosome recognition needed for homologous pairing. The dsy2 mutation fails to maintain the SC. ZYP1 elongation is blocked at zygotene, and only dots of ZYP1 are seen at prophase I. Another mutant, mei*N2415 showed incomplete but homologous synapsis and ASY1 and AFD1 have a normal distribution. Although installation of ZYP1 is initiated at zygotene, its progression is slowed down and not completed by pachytene in some cells and ZYP1 is not retained on pachytene chromosomes. The mutants described here are now available through the Maize Genetics Cooperation Stock Center (http://maizecoop.cropsci.uiuc.edu/).  相似文献   
66.
Seed growth and accumulation of storage products relies on the delivery of sucrose from the maternal to the filial tissues. The transport route is hidden inside the seed and has never been visualized in vivo. Our approach, based on high‐field nuclear magnetic resonance and a custom made 13C/1H double resonant coil, allows the non‐invasive imaging and monitoring of sucrose allocation within the seed. The new technique visualizes the main stream of sucrose and determines its velocity during the grain filling in barley (Hordeum vulgare L.). Quantifiable dynamic images are provided, which allow observing movement of 13C‐sucrose at a sub‐millimetre level of resolution. The analysis of genetically modified barley grains (Jekyll transgenic lines, seg8 and Risø13 mutants) demonstrated that sucrose release via the nucellar projection towards the endosperm provides an essential mean for the control of seed growth by maternal organism. The sucrose allocation was further determined by structural and metabolic features of endosperm. Sucrose monitoring was integrated with an in silico flux balance analysis, representing a powerful platform for non‐invasive study of seed filling in crops.  相似文献   
67.
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society’s pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.

The characteristics of the Lemnaceae are introduced to the plant biology community, and recent studies are described showing how duckweed represents an ideal model for systems-level investigations.  相似文献   
68.
Quantitative imaging of oil storage in developing crop seeds   总被引:1,自引:0,他引:1  
In this article, we present a tool which allows the rapid and non-invasive detection and quantitative visualization of lipid in living seeds at a variety of stages using frequency-selected magnetic resonance imaging. The method provides quantitative lipid maps with a resolution close to the cellular level (in-plane 31 µm × 31 µm). The reliability of the method was demonstrated using two contrasting subjects: the barley grain (monocot, 2% oil, highly compartmentalized) and the soybean grain (dicot, 20% oil, economically important oilseed). Steep gradients in local oil storage were defined at the organ- and tissue-specific scales. These gradients were closely coordinated with tissue differentiation and seed maturation, as revealed by electron microscopy and biochemical and gene expression analysis. The method can be used to elucidate similar oil accumulation processes in different tissues/organs, as well as to follow the fate of storage lipids during deposition and subsequent mobilization.  相似文献   
69.
70.
The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross‐bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号