首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   13篇
  297篇
  2023年   1篇
  2021年   5篇
  2020年   6篇
  2019年   9篇
  2018年   11篇
  2017年   7篇
  2016年   8篇
  2015年   7篇
  2014年   15篇
  2013年   21篇
  2012年   34篇
  2011年   19篇
  2010年   14篇
  2009年   14篇
  2008年   19篇
  2007年   18篇
  2006年   16篇
  2005年   10篇
  2004年   12篇
  2003年   16篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1989年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
81.
ABSTRACT

In the course of embryo implantation extensive interaction of the trophoblast with uterine tissue is crucial for adequate trophoblast invasion. This interaction is highly controlled, and it has been pointed out that a specific glycocode and changes in glycosylation may be important for successful implantation and maintenance of pregnancy. Both uterine and trophoblast cells have been shown to express cell surface glycoconjugates and sugar binding proteins, such as mucins (MUC) and galectins (gals). An increasing number of studies have investigated potential candidates interacting in this process. However, knowledge about the biochemical nature of the interactions and their importance for trophoblast cell function, and, consequently, for pregnancy outcome are still lacking. This review is aimed at deliberating the possibility that mucins, as heavily glycosylated proteins, might be among the functionally relevant galectin ligands in human trophoblast, based on both published data and our original research.  相似文献   
82.
Filamin C is a dimeric, actin-binding protein involved in organization of cortical cytoskeleton and of the sarcomere. We performed crystallographic, small-angle X-ray scattering and analytical ultracentrifugation experiments on the constructs containing carboxy-terminal domains of the protein (domains 23-24 and 19-21). The crystal structure of domain 23 of filamin C showed that the protein adopts the expected immunoglobulin (Ig)-like fold. Small-angle X-ray scattering experiments performed on filamin C tandem Ig-like domains 23 and 24 reveal a dimer that is formed by domain 24 and that domain 23 has little interactions with itself or with domain 24, while the analytical ultracentrifugation experiments showed that the filamin C domains 19-21 form elongated monomers in diluted solutions.  相似文献   
83.
Patterning the axis in plants--auxin in control   总被引:6,自引:0,他引:6  
Axis formation and patterning are fundamental processes establishing the body organization of multicellular organisms. In plants, patterning is not confined to embryogenesis but continues to produce new structures--lateral organs--along the growing primary body axis and also initiates secondary body axes. The signalling molecule auxin has been identified as a key player in plant axial patterning. The shoot and root sections of the axis seem to produce lateral organs in different ways. However, very recent findings suggest a general mechanism of branching triggered by local accumulation of auxin in a 'zone of competence' at the margin of stem-cell systems. How the general auxin signal is converted into organ-specific developmental programs remains a major challenge for the future.  相似文献   
84.

Brassica oleracea var. acephala is an important leafy vegetable that has been widely consumed as a high-nutrient, low-calorie food. Because of the plant’s biennial and self-incompatibility nature, biotechnological approaches are alternative way for propagation and breeding improvements. Since tissue culture studies have been focused in other B. oleracea representatives, the aim of the present study was to achieve effective regeneration protocol distinctive for collard greens, and evaluate the total phenolic content and antioxidant activity of regenerants. The effect of 3 cytokinins [thidiazuron (TDZ), 6-benzyladenine (BA) and 6-furfuryladenine (kinetin, KIN)] at increasing concentrations (0, 5, 7.5, 10, 20 or 30 µM) in combination with tenfold lower concentration of 1-naphtaleneacetic acid (NAA) (0, 0.5, 0.75, 1, 2 or 3 µM, respectively) on the regeneration from hypocotyl slices was studied. Histological analysis revealed the two regeneration pathways, somatic embryogenesis and shoot organogenesis, simultaneously occurred in the same explant, regardless of the cytokinin/NAA combinations used. The regeneration frequency of 95.9%, with 7.5 morphogenic structures regenerated per explant, and the healthy appearance of regenerated plants indicated the optimal combination 20 µM TDZ?+?2 µM NAA. TDZ at 5 µM provided the high somatic embryo proliferation rate by generation of secondary embryos (7.79) along with the lowest rate of their abnormalities. Embryo-developed plants were successfully acclimatised (above 90%). The plants regenerated and proliferated on TDZ-containing media had higher total phenolic content that correlated with the highest free radical scavenging activity (IC50?=?19.09 µg ml??1).

  相似文献   
85.
The aim of the present study is to investigate the antibacterial activity of Salvia officinalis L. aqueous extracts and its synergistic action with preservatives sodium nitrite, sodium benzoate and potassium sorbate in vitro against selected food spoiling bacteria. Synergy was assessed by the checkerboard assay method and quantitatively represented by the FIC index. Synergistic action was established for aqueous extract/ sodium benzoate, aqueous extract/ potassium sorbate, aqueous extract/ sodium nitrite combinations. Synergy was detected in relation to: Agrobacterium tumefaciens, Bacillus subtilis and Proteus sp. Synergy was established at plant extract and preservative concentrations corresponding up to 1/8 MIC values.  相似文献   
86.
Mucins are multifunctional highly glycosylated proteins expressed by the female reproductive tract. Differential expression of MUC1 and MUC15 has been shown in trophoblast. This study was undertaken to establish the distribution of mucin(s) in cytotrophoblast cell cultures using anti-bovine submaxillary mucin (BSM) and to investigate the possibility of MUC1/mucin(s) being a binding partner of trophoblast galectin-1. MUC1 is demonstrated here using immunocytochemistry on isolated cytotrophoblast and the HTR-8/SVneo extravillous trophoblast cell line but detection of additional trophoblast mucins cannot be excluded. Western blot analysis showed similar bands ranging from 30 to >200 kDa with anti-BSM and the well-known mucin antibodies HMFG1 and B72.3. Immunocytochemistry and cell-based ELISA data were found to support that all of the antibodies used are reactive with BSM, suggesting the presence of shared epitopes between BSM and trophoblast mucin(s). Binding of galectin-1 to trophoblast MUC1/mucin(s) was analyzed using a solid-phase assay and co-immunoprecipitation. Recombinant galectin-1 binding to isolated trophoblast mucin in solid-phase assay was sensitive to lactose, a carbohydrate inhibitor of galectin binding. In whole HTR-8/SVneo lysates, ~200 kDa mucin was detected in galectin-1 immunoprecipitates, while endogenous galectin-1 was present in BSM-immunoprecipitates. Furthermore, double fluorescence immunocytochemistry showed overlap of galectin-1 and trophoblast mucins at the plasma membrane of HTR-8/SVneo cells. These results suggest that trophoblast mucin(s) could act as binding partners of galectin-1, in a carbohydrate-dependent manner.  相似文献   
87.
The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompα) and the porin OmpB (or Ompβ). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant β-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had β-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.  相似文献   
88.
Like other helminths, Trichinella spiralis has evolved strategies to allow it to survive in the host organism, including the expression of epitopes similar to those present in either expressed or hidden host antigens. To identify T. spiralis-derived antigens that are evolutionarily conserved in the parasite and its host and that could be responsible for its evasion of the host immune response, we examined the reactivity of six different types of autoantibodies to T. spiralis larvae from muscle. T. spiralis antigens that share epitopes with human autoantigens were identified by assessing the cross-reactivity of autoantibody-containing serum samples with T. spiralis antigens in the absence of specific anti-parasite antibodies. Of the 55 autoantibody-containing human serum samples that we analysed by immunohistological screening, 24 (43.6%) recognised T. spiralis muscle larvae structures such as the subcuticular region, the genital primordium or the midgut. Using Western blots, we demonstrated that the same sera reacted with 24 protein components of T. spiralis muscle larvae excretory-secretory L1 antigens. We found that the human autoantibodies predominantly bound antigens belonging to the TSL1 group; more specifically, the autoantibody-containing sera reacted most frequently with the 53-kDa component. Thus, this protein is a good candidate for further studies of the mechanisms of T. spiralis-mediated immunomodulation.  相似文献   
89.
Tamoxifen resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that are associated with tamoxifen resistance is a first step toward better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy resistance in breast cancer using nano-LC coupled with FTICR MS. Comparative proteome analysis was performed on ∼5,500 pooled tumor cells (corresponding to ∼550 ng of protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n = 24 and n = 27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag reference databases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with ≥2 peptides. 1,713 overlapping proteins between the two data sets were used for further analysis. Comparative proteome analysis revealed 100 putatively differentially abundant proteins between tamoxifen-sensitive and tamoxifen-resistant tumors. The presence and relative abundance for 47 differentially abundant proteins were verified by targeted nano-LC-MS/MS in a selection of unpooled, non-microdissected discovery set tumor tissue extracts. ENPP1, EIF3E, and GNB4 were significantly associated with progression-free survival upon tamoxifen treatment for recurrent disease. Differential abundance of our top discriminating protein, extracellular matrix metalloproteinase inducer, was validated by tissue microarray in an independent patient cohort (n = 156). Extracellular matrix metalloproteinase inducer levels were higher in therapy-resistant tumors and significantly associated with an earlier tumor progression following first line tamoxifen treatment (hazard ratio, 1.87; 95% confidence interval, 1.25–2.80; p = 0.002). In summary, comparative proteomics performed on laser capture microdissection-derived breast tumor cells using nano-LC-FTICR MS technology revealed a set of putative biomarkers associated with tamoxifen therapy resistance in recurrent breast cancer.Tamoxifen is an antiestrogenic agent that has been widely and successfully used in the treatment of breast cancer over the past decades (1). Tamoxifen targets and inhibits the estrogen receptor-α, which is expressed in ∼70% of all primary breast tumors and is known to be important in the development and course of the disease. When diagnosed at an early stage, adjuvant systemic tamoxifen therapy can cure ∼10% of the patients (1). In recurrent disease, ∼50% of patients have no benefit from tamoxifen (intrinsic resistance). From the other half of patients who initially respond to therapy with an objective response (OR)1 or no change (NC), a majority eventually develop progressive disease (PD) due to acquired tamoxifen resistance (2, 3). With the markers available to date we can insufficiently predict therapy response. Therefore, identification of new biomarkers that can more effectively predict response to treatment and that can potentially function as drug targets is a major focus of research.The search for new biomarkers has been enhanced by the introduction of microarray technology. Gene expression studies have resulted in a whole spectrum of profiles for e.g. molecular subtypes, prognosis, and therapy prediction in breast cancer (410). Corresponding studies at the protein level are lagging behind because of immature technology. However, protein-level information is crucial for the functional understanding and the ultimate translation of molecular knowledge into clinical practice, and proteomics technologies continue to progress at a rapid pace.Proteomics studies reported so far have mainly been performed with breast cancer cell lines using either two-dimensional gel electrophoresis (1114) or LC-MS for protein separation (1517). However, it is known that the proteomic makeup of a cultured cell is rather different from that of a tumor cell surrounded by its native microenvironment (18). Furthermore cell lines lack the required follow-up information for answering important clinical questions. In addition, tumor tissues in general and breast cancer tissues in particular are very heterogeneous in the sense that they harbor many different cell types, such as stroma, normal epithelium, and tumor cells. LCM technology has emerged as an ideal tool for selectively extracting cells of interest from their natural environment (19) and has therefore been an important step forward in the context of genomics and proteomics cancer biomarker discovery research. LCM-derived breast cancer tumor cells have been used for comparative proteomics analyses in the past using both two-dimensional gel electrophoresis (20, 21) and LC-MS (22). This has resulted in the identification of proteins involved in breast cancer prognosis (21) and metastasis (20, 22). Although these studies demonstrated that proteomics technology has advanced to the level where it can contribute to biomarker discovery, major drawbacks, such as large sample requirements (42–700 μg) and low proteome coverage (50–76 proteins), for small amounts of starting material (∼1 μg) persist. Because clinical samples are often available in limited quantities, in-depth analysis of minute amounts of material (<1 μg) necessitates advanced technologies with sufficient sensitivity and depth of coverage.Recently we demonstrated the applicability of nano-LC-FTICR MS in combination with the accurate mass and time (AMT) tag approach for proteomics characterization of ∼3,000 LCM-derived breast cancer cells (23). This study showed that proteome coverage was improved compared with conventional techniques. The AMT tag approach initially utilizes conventional LC-MS/MS measurements to establish a reference database of AMT tags specific for a particular proteome sample (e.g. breast cancer tissue). Each tag consists of a theoretical mass calculated from the peptide sequence, an LC normalized elution time (NET) value, and an indicator of quality. The AMT tag database serves as a “lookup table” for identifying peptides in subsequent quantitative LC-MS analyses. Substituting routine LC-MS/MS analyses (shotgun approach) with LC-FTICR MS analyses (AMT tag approach) significantly increases overall throughput and sensitivity while reducing sample requirements. Additionally quantitative intensity information related to the abundance of the protein can be discerned from these MS analyses (24). In the present study, we used the same strategy to analyze eight pools of tumor cells in duplicate or triplicate (resulting in 19 samples) derived from 51 fresh frozen primary invasive breast carcinomas that appeared to be either sensitive or resistant to tamoxifen treatment after recurrence. This work resulted in the identification of a putative protein profile associated with tamoxifen therapy resistance. In addition, the top discriminating protein of the putative profile, extracellular matrix metalloproteinase inducer (EMMPRIN), was validated in an independent patient cohort and was significantly associated with resistance to tamoxifen therapy and shorter time to progression upon tamoxifen treatment in recurrent breast cancer.  相似文献   
90.
The auxin influx carrier LAX3 promotes lateral root emergence   总被引:1,自引:0,他引:1  
Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号