首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   26篇
  2023年   4篇
  2022年   5篇
  2021年   15篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   9篇
  2016年   9篇
  2015年   18篇
  2014年   10篇
  2013年   17篇
  2012年   28篇
  2011年   20篇
  2010年   15篇
  2009年   19篇
  2008年   7篇
  2007年   16篇
  2006年   21篇
  2005年   15篇
  2004年   13篇
  2003年   9篇
  2002年   12篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1996年   4篇
  1995年   2篇
  1993年   1篇
  1985年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有310条查询结果,搜索用时 609 毫秒
151.
GJA1 (also known and referred to here as connexin 43 and abbreviated CX43) is the predominant testicular gap junction protein, and CX43 may regulate Sertoli cell maturation and spermatogenesis. We hypothesized that lack of CX43 would inhibit Sertoli cell differentiation and extend proliferation. To test this, a Sertoli cell-specific Cx43 knockout (SC-Cx43 KO) mouse was generated using Cre-lox technology. Immunohistochemistry indicated that CX43 was not expressed in the Sertoli cells of SC-Cx43 KO mice, but was normal in organs such as the heart. Testicular weight was reduced by 41% and 76% in SC-Cx43 KO mice at 20 and 60 days, respectively, vs. wild-type (wt) mice. Seminiferous tubules of SC-Cx43 KO mice contained only Sertoli cells and actively proliferating early spermatogonia. Sertoli cells normally cease proliferation at 2 wk of age in mice and become terminally differentiated. However, proliferating Sertoli cells were present in SC-Cx43 KO but not wt mice at 20 and 60 days of age. Thyroid hormone receptor alpha (THRA) is high in proliferating Sertoli cells, then declines sharply in adulthood. Thra mRNA expression was increased in 20-day SC-Cx43 KO vs. wt mice, and it showed a trend toward an increase in 60-day mice, indicating that loss of CX43 in Sertoli cells inhibited their maturation. In conclusion, we have generated mice lacking CX43 in Sertoli cells but not other tissues. Our data indicate that CX43 in Sertoli cells is essential for spermatogenesis but not spermatogonial maintenance/proliferation. SC-Cx43 KO mice showed continued Sertoli cell proliferation and delayed maturation in adulthood, indicating that CX43 plays key roles in Sertoli cell development.  相似文献   
152.
BackgroundCarcinogenesis is governed by a series of genetic alterations and epigenetic changes that lead to aberrant patterns in neoplastic cells. Sirtuin-1(SIRT1), an NAD+-dependent protein deacetylase, is capable of deacetylating histones and non-histone substrates that regulate various physiological activities during tumorigenesis. Recent studies have identified the role of SIRT1 in different stages of cancer, including genome instability, tumor initiation, proliferation, metabolism, and therapeutic response. However, the action of SIRT1 has been reported to be both oncogenic and tumor suppressive during carcinogenesis. Consequently, the biological functions of SIRT1 in cancer remain controversial.Scope of reviewWe highlight the most recent findings on SIRT1 in different stages of tumorigenesis, and update the current status of SIRT1 small molecule modulators in clinical application of cancer treatment.Major conclusionBy targeting both tumor suppressors and oncogenic proteins, SIRT1 has a bifunctional role at different stages of tumorigenesis. The impact of SIRT1 on tumorigenesis is also distinct at different stages and is dependent on its dosages. SIRT1 suppresses tumor initiation through its functions in promoting DNA repair, increasing genome stability, and inhibiting inflammation at the pre-cancer stage. However, SIRT1 enhances tumor proliferation, survival, and drug resistance through its roles in anti-apoptosis, pro-tumor metabolism, and anti-inflammation (inhibition of anti-tumor immunity) at the stages of tumor progression, metastasis, and relapse. Consequently, both SIRT1 inhibitors and activators have been explored for cancer treatment.General significanceBetter understanding the dose- and stage-dependent roles of SIRT1 in each cancer type can provide new avenues of exploration for therapy development.  相似文献   
153.
154.
155.
What is artificial life? Much has been said about this interesting collection of efforts to artificially simulate and synthesize lifelike behavior and processes, yet we are far from having a robust philosophical understanding of just what Alifers are doing and why it ought to interest philosophers of science, and philosophers of biology in particular. In this paper, I first provide three introductory examples from the particular subset of artificial life I focus on, known as ‘soft Alife’ (s-Alife), and follow up with a more in-depth review of the Avida program, which serves as my case study of s-Alife. Next, I review three well-known accounts of thought experiments, and then offer my own synthesized account, to make the argument that s-Alife functions as thought experimentation in biology. I draw a comparison between the methodology of the thought-experimental world that yields real-world results, and the s-Alife research that informs our understanding of natural life. I conclude that the insights provided by s-Alife research have the potential to fundamentally alter our understanding of the nature of organic life and thus deserve the attention of both philosophers and natural scientists.  相似文献   
156.
157.
Multicellular organisms have evolved processes to prevent abnormal proliferation or inappropriate tissue infiltration of cells, and these tumor suppressive mechanisms serve to prevent tissue hyperplasia, tumor development, and metastatic spread of tumors. These include potentially reversible processes such as cell cycle arrest and cellular senescence, as well as apoptotic cell death, which in contrast eliminates dangerous cells that may initiate tumor development. Tumor suppressive processes are organized as complex, extensive signaling networks, controlled by central “nodes.” These “nodes” are prominent tumor suppressors, such as P53 or PTEN, whose loss is responsible for the development of the majority of human cancers. In this review we discuss the processes by which some of these prominent tumor suppressors trigger apoptotic cell death and how this process protects us from cancer development.A malignant tumor is characterized by the ability to expand in an uncontrolled manner, destroy normal tissue architecture, and ultimately undergo metastatic spread (Hanahan and Weinberg 2000). Although the number of mutations required for neoplastic transformation may vary, all tumors are reliant on two critical mechanisms for their development; the activation of oncogenes that promote proliferation and survival of cancer cells, as well as the inactivation of tumor suppressor genes that normally repress development and growth of tumors (Hanahan and Weinberg 2000).Oncogenes can be activated via multiple mechanisms, including chromosomal translocations, deletions or insertions, as well as point mutations. One such example is the translocation between chromosomes 9 and 22 that is present in most cases of chronic myeloid leukemia. The juxtaposition of the BCR and c-ABL genes results in the production of an abnormal BCR-ABL fusion protein with constitutive kinase activity (Deininger et al. 2005). However, in other cancer-causing chromosomal translocations, such as the t[8;14] translocation in Burkitt’s lymphoma, the coding sequence of the oncogene, c-MYC, is unchanged; rather its activation results from deregulated expression in B lymphoid cells as a consequence of its proximity to the IGH gene enhancer (Cory et al. 1987). Tumorigenesis promoted by deregulated kinase activity frequently results from the acquisition of point mutations. In this context, a single amino acid substitution can dramatically enhance kinase activity by preventing binding of negative regulators or “locking” the catalytic domain in the active conformation. This is exemplified by the BRAF(V600E) mutation frequently observed in melanoma or colon carcinoma (Poulikakos and Rosen 2011) and the activating mutations in EGF-R observed in lung adenocarcinoma (Sharma et al. 2007).Analogous to the activation of oncogenes, tumor suppressor genes can be inactivated through multiple mechanisms, including large-scale chromosomal alterations or point mutations. However, in most cases both alleles of the gene must be compromised to abolish gene function, unless the mutated protein can act in a dominant-negative fashion to block the activity of its wild-type counterpart.Multicellular organisms have evolved a plethora of mechanisms to restrain the growth or even eliminate aberrant cells—these processes can all function as tumor suppressors. Notably, of the attributes that cells must acquire to become cancerous (“hallmarks of cancer”) discussed by Hanahan and Weinberg (2000), several relate to escape from regulatory processes that would normally suppress tumor growth. They include cell cycle arrest, cellular senescence, and cell death; of these only cell death is irreversible, all others can (at least potentially) be reversed. In this review, we describe the mechanisms by which tumor suppressors that are disabled in a broad range and large fraction of cancers trigger cell death, and how components of the apoptotic machinery can themselves act as tumor suppressors.  相似文献   
158.

Background

There is strong evidence that oxidative stress is associated with the pathogenesis of chronic obstructive pulmonary disease (COPD). The transient receptor potential melastatin-2 (TRPM2) is an oxidative stress sensing channel that is expressed in a number of inflammatory cells and therefore it has been suggested that inhibition of TRPM2 could lead to a beneficial effect in COPD patients. In this study, we have investigated the role of TRPM2 in a variety of mouse models of oxidative stress and COPD using TRPM2-deficent mice.

Methods

Mice were exposed to ozone (3 ppm for 4 h) or lipopolysaccharide (LPS, 0.3 mg/kg, intranasaly). In another model, mice were exposed to tobacco smoke (750 μg/l total wet particulate matter) for 30 min twice a day on three consecutive days. For the exacerbation model, the smoke exposure on the morning of day 3 animals was replaced with intranasal administration of LPS (0.3 mg/kg). Animals were killed 3 and 24 h after the challenge (ozone and LPS model) or 18 h after the last tobacco smoke exposure. In vitro neutrophil chemotaxis and monocyte activation were also studied using cells isolated from wild type and TRPM2-deficient animals. Statistical significance for the in vivo data (P < 0.05) was determined using analysis of variance with Kruskal-Wallis and Dunns multiple comparison test.

Results

In all models studied, no difference in the bronchoalveolar lavage inflammation could be evidenced when comparing wild type and TRPM2-deficient mice. In addition, no difference could be seen in the lung inflammation as assessed by the measurement of various cytokines/chemokines. Similarly in various in vitro cellular activation assays using isolated neutrophils and monocytes no significant differences could be observed when comparing wild type and TRPM2-deficient mice.

Discussion

We have shown, in all the models tested, no difference in the development of airway inflammation or cell activation between TRPM2-deficient mice and their wild type counterparts. These results would suggest that inhibiting TRPM2 activity in COPD would have no anti-inflammatory effect.  相似文献   
159.
This review describes outcomes of a 2010 horizon-scanning exercise building upon the first exercise conducted in 2009. The aim of both horizon scans was to identify emerging issues that could have substantial impacts on the conservation of biological diversity, and to do so sufficiently early to encourage policy-relevant, practical research on those issues. Our group included professional horizon scanners and researchers affiliated with universities and non- and inter-governmental organizations, including specialists on topics such as invasive species, wildlife diseases and coral reefs. We identified 15 nascent issues, including new greenhouse gases, genetic techniques to eradicate mosquitoes, milk consumption in Asia and societal pessimism.  相似文献   
160.
Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-K(b) generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-D(b)-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-D(b) DCs were superior to WT-D(b) DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号