首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   35篇
  396篇
  2023年   4篇
  2022年   6篇
  2021年   16篇
  2020年   8篇
  2019年   8篇
  2018年   7篇
  2017年   10篇
  2016年   15篇
  2015年   19篇
  2014年   16篇
  2013年   23篇
  2012年   34篇
  2011年   27篇
  2010年   20篇
  2009年   21篇
  2008年   10篇
  2007年   20篇
  2006年   24篇
  2005年   19篇
  2004年   19篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1985年   3篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有396条查询结果,搜索用时 15 毫秒
81.
We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance‐only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.  相似文献   
82.
Cytosolic phospholipase A(2)α (cPLA(2)α) up-regulation has been reported in human colorectal cancer cells, thus we aimed to elucidate its role in the proliferation of the human colorectal cancer cell line, HT-29. EGF caused a rapid activation of cPLA(2)α which coincided with a significant increase in cell proliferation. The inhibition of cPLA(2)α activity by pyrrophenone or by antisense oligonucleotide against cPLA(2)α (AS) or inhibition of prostaglandin E(2) (PGE(2)) production by indomethacin resulted with inhibition of cell proliferation, that was restored by addition of PGE(2). The secreted PGE(2) activated both protein kinase A (PKA) and PKB/Akt pathways via the EP2 and EP4 receptors. Either, the PKA inhibitor (H-89) or the PKB/Akt inhibitor (Ly294002) caused a partial inhibition of cell proliferation which was restored by PGE(2). But, inhibited proliferation in the presence of both inhibitors could not be restored by addition of PGE(2). AS or H-89, but not Ly294002, inhibited CREB activation, suggesting that CREB activation is mediated by PKA. AS or Ly294002, but not H-89, decreased PKB/Akt activation as well as the nuclear localization of β-catenin and cyclin D1 and increased the plasma membrane localization of β-catenin with E-cadherin, suggesting that these processes are regulated by the PKB pathway. Similarly, Caco-2 cells exhibited cPLA(2)α dependent proliferation via activation of both PKA and PKB/Akt pathways. In conclusion, our findings suggest that the regulation of HT-29 proliferation is mediated by cPLA(2)α-dependent PGE(2) production. PGE(2)via EP induces CREB phosphorylation by the PKA pathway and regulates β-catenin and cyclin D1 cellular localization by PKB/Akt pathway.  相似文献   
83.
Genetic factors are likely to affect individual cancer risk, but few quantitative estimates of heritability are available. Public health radiation protection policies do not in general take this potentially important source of variation in risk into account. Two surrogate cellular assays that relate to cancer susceptibility have been developed to gain an insight into the role of genetics in determining individual variation in radiosensitivity. These flow cytometric assays for apoptosis induction and cell cycle delay following radiation are sufficiently sensitive to distinguish lymphocytes from a healthy donor population from those of a sample of obligate carriers of ATM mutations (P = 0.01 and P = 0.02, respectively). Analysis of 54 unselected twin pairs (38 dizygotic, 16 monozygotic) indicated much greater intrapair correlation in response in monozygotic than in dizygotic pairs. Structural equation modelling indicated that models including unique environmental factors only fitted the data less well than those incorporating two or more of additive genetic factors, common environmental factors and unique environmental factors. A model incorporating additive genetic factors and unique environmental factors yielded estimates of heritability for the two traits of 68% (95% CI 40–82%, cell cycle) and 59% (95% CI 22–79%, apoptosis). Thus, these data suggest that genetic factors contribute significantly to human variation in these two measures of radiosensitivity that relate to cancer susceptibility.  相似文献   
84.
Soil microbial communities can have an important role in the adaptation of plants to their local abiotic soil conditions and in mediating plant responses to environmental stress. This has been clearly demonstrated for individual plant species, but it is unknown how locally adapted microbes may affect plant communities. It is possible that the adaptation of microbial communities to local conditions can shape plant community composition. Additionally, it is possible that the effects of locally adapted microorganisms on individual plant species could be altered by co-occurring plant species. We tested these possibilities in plant community mesocosms with soils and mycorrhizal fungi (AMF) from three locations. We found that plant community biomass responded positively to local adaptation of AMF to soil conditions. Plant community composition also changed in response to local adaptation of AMF. Unexpectedly, the strongest benefits of locally adapted AMF went to early successional plant species that have the highest relative growth rates and the lowest responsiveness to the presence of AMF. Late successional plants that responded positively overall to the presence of AMF were often suppressed in communities with local AMF, perhaps because of strong competition from fast growing plant species. These results show that local adaptation of soil microbial communities can shape plant community composition, and the benefits that plants derive from locally adapted microorganisms can be reshaped by the competitive context in which these associations occur.  相似文献   
85.
The aldol reaction of the endogeneous compounds acetone and methylglyoxal has been studied using organocatalysis in relation to biologically relevant non-enzymatic reactions. Under preparative conditions, 3-hydroxy-2,5-hexadione, known as Henze’s ketol, is formed in high yield and with enantioselectivities up to 88% ee. Furthermore, Henze’s ketol is also formed under simulated physiological conditions at micromolar scale, indicating that this reaction might take place in living organisms.  相似文献   
86.
87.
Calcium limitation in Daphnia magna   总被引:1,自引:0,他引:1  
The role of ambient calcium concentrations on survival, moulting,growth and egg production was assessed in the cladoceran Daphniamagna. A threshold for survival was found in the range 0.1–0.5mg Ca l–1, even when ionic strength of the medium waskept constant. Accumulated length and length specific dry weightwas retarded at low Ca (0.5–1.0 mg Ca l–1) at foodconcentrations above incipient limiting level. For lower foodlevels, the effect of Ca on growth was less clear. The effectof low Ca on growth rate was most manifest during the firstdays after hatching, reflecting the higher Ca demands of theearly juveniles. Age-specific egg production was strongly reducedat Ca concentrations <10 mg Ca l–1. This was partlyan indirect effect of reduced growth rates, but could also bean effect of higher energetic costs associated with Ca uptakein a Ca-poor medium. The high Ca demands in D.magna may notbe representative of other Daphnia species. Nevertheless, highspecific Ca content seems to be a common property of Daphniaspp. and Ca deficiency could be a major determinant of speciessuccess and community structure among crustacean zooplankton;it also puts constraints on carbon sequestration in the pelagicfood web of softwater lakes.  相似文献   
88.
Hydrobiologia - River fragmentation is expected to impact not only movement patterns and distribution of eels within catchment, but also their life-history traits. Here, we used otolith...  相似文献   
89.
Bird populations in grasslands have experienced declines coinciding with loss and fragmentation of prairies. The United States Department of Agriculture (USDA)-administered Conservation Reserve Program (CRP) is the most extensive grassland restoration program in North America and it has especially benefitted grassland birds. Grazing by domestic cattle has been restricted in CRP during avian nesting seasons despite the potential improvements in structuring habitat for a greater diversity of grassland bird species. Potential negative consequences of grazing in CRP grasslands include trampling of nests by cattle, reductions in nest concealment from predators, and attraction of brood-parasitic brown-headed cowbirds (Molothrus ater). We designed an experiment to test for effects of cattle grazing in CRP fields during the nesting season on nest survival and brood parasitism of 5 bird species that commonly nest in CRP grasslands: mourning dove (Zenaida macroura), grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), and eastern (Sturnella magna) and western (S. neglecta) meadowlarks. Grazing was implemented during summers 2017 and 2018 on 17 of 36 fields followed by a year of rest on all fields in 2019. Of the 879 nests on grazed fields, only 4 were likely trampled by cattle (vs. 54% of all nests estimated as failing because of depredation). Experimental grazing (grazed vs. ungrazed fields) had variable effects on nest survival and cowbird parasitism among the bird species analyzed. Negative effects of grazing on daily nest survival of dickcissel and meadowlarks were apparent, at least in some years. We found no direct effects of grazing on nest survival of mourning dove or grasshopper sparrow. Probability and intensity (cowbird offspring/nest) of cowbird parasitism in dickcissel nests was higher on grazed versus ungrazed sites but only in conservation practice (CP) CP2 (vs. CP25 fields). Parasitism probability of grasshopper sparrow nests by cowbirds was higher on grazed fields in the 2 years after introduction of cattle in 2017. Greater vegetative concealment around nest sites was associated with reduced cowbird parasitism of meadowlark and grasshopper sparrow nests and higher nest survival for grasshopper sparrows. Reductions in vegetative height caused by longer-term or high-intensity grazing might therefore have negative consequences for some grassland birds by increasing nest site visibility and exposure to cowbird parasitism. Our results indicate that cattle grazing in CRP fields during the nesting season might have some negative effects on reproductive success of some grassland bird species, at least in the short term; however, the potential improvements of structuring habitat to accommodate more grassland bird species and increasing landowner participation in the CRP are considerable.  相似文献   
90.
Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M—(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号