首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2084篇
  免费   157篇
  国内免费   190篇
  2024年   3篇
  2023年   33篇
  2022年   72篇
  2021年   98篇
  2020年   73篇
  2019年   105篇
  2018年   87篇
  2017年   76篇
  2016年   100篇
  2015年   144篇
  2014年   135篇
  2013年   194篇
  2012年   185篇
  2011年   186篇
  2010年   99篇
  2009年   103篇
  2008年   112篇
  2007年   79篇
  2006年   78篇
  2005年   78篇
  2004年   58篇
  2003年   49篇
  2002年   38篇
  2001年   30篇
  2000年   34篇
  1999年   32篇
  1998年   22篇
  1997年   29篇
  1996年   7篇
  1995年   15篇
  1994年   15篇
  1993年   11篇
  1992年   17篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有2431条查询结果,搜索用时 234 毫秒
231.
Decorin, fibromodulin and lumican are small leucine-rich repeat proteoglycans (SLRPs) which interact with the surface of collagen fibrils. Together with other molecules they form a coat on the fibril surface which could impede the access to collagenolytic proteinases. To address this hypothesis, fibrils of type I or type II collagen were formed in vitro and treated with either collagenase-1 (MMP1) or collagenase-3 (MMP13). The fibrils were either treated directly or following incubation in the presence of the recombinant SLRPs. The susceptibility of the uncoated and SLRP-coated fibrils to collagenase cleavage was assessed by SDS/PAGE. Interaction with either recombinant decorin, fibromodulin or lumican results in decreased collagenase cleavage of both fibril types. Thus SLRP interaction can help protect collagen fibrils from cleavage by collagenases.  相似文献   
232.
Apelin protects myocardial injury induced by isoproterenol in rats   总被引:16,自引:0,他引:16  
Jia YX  Pan CS  Zhang J  Geng B  Zhao J  Gerns H  Yang J  Chang JK  Tang CS  Qi YF 《Regulatory peptides》2006,133(1-3):147-154
We aimed to explore the change in level of apelin and its receptor APJ during myocardial injury and the therapeutic effects of apelin in myocardial injury. Rat myocardial injury was induced by subcutaneous injection of a high dose of isoproterenol (ISO); apelin and APJ mRNA levels were determined by RT-PCR; APJ protein was determined by Western blot; EIA and RIA were used to measure the apelin content and receptor binding, respectively. Plasma lactate dehydrogenase (LDH) activity and myocardial and plasma malondialdehyde (MDA) contents were higher in ISO-treated hearts than that in controls. ISO-treated rats showed lower +/-LV dp/dt(max) values and higher LVEDP value (all P<0.01), which suggested severe heart failure. As well, the apelin content in plasma, atrial and ventricular myocardium was decreased by 27%, 30% and 25% (P<0.01), respectively. The mRNA levels of apelin and APJ in myocardia were also markedly reduced; but the APJ protein level in myocardia was increased. However, administration of apelin significantly ameliorated myocardial injury and ISO-induced heart failure. Compared with the ISO-alone group, the group given low-dosage apelin (5 nmol/kg/day) had 39% and 66% higher +LV dp/dt(max) and -LV dp/dt(max) values, and 40.7% lower LVEDP value (P<0.01), and the leakage of myocardial LDH and increased MDA content were attenuated (all P<0.01). Interestingly, bolus injections of apelin (10 nmol/kg/day) resulted in potent inotropic effects in ISO-treated rats. ISO-induced myocardial injury resulted in hypoexpression of apelin and its receptor APJ, and the administration of exogenous apelin ameliorated heart failure and myocardial injury. Apelin could have a cardioprotective effect, and the apelin-APJ system may be a new therapeutic target in myocardial injury and heart failure.  相似文献   
233.
The proliferation of neutrophil granulocyte lineage is driven largely by granulocyte colony-stimulating factor (G-CSF) acting via the G-CSF receptors. In this study, we show that mice lacking cyclin D3, a component of the core cell cycle machinery, are refractory to stimulation by the G-CSF. Consequently, cyclin D3-null mice display deficient maturation of granulocytes in the bone marrow and have reduced levels of neutrophil granulocytes in their peripheral blood. The mutant mice are unable to mount a normal response to bacterial challenge and succumb to microbial infections. In contrast, the expansion of hematopoietic stem cells and lineage-committed myeloid progenitors proceeds relatively normally in mice lacking cyclin D3, revealing that the requirement for cyclin D3 function operates at later stages of neutrophil development. Importantly, we verified that this requirement is specific to cyclin D3, as mice lacking other G(1) cyclins (D1, D2, E1, or E2) display normal granulocyte counts. Our analyses revealed that in the bone marrow cells of wild-type mice, activation of the G-CSF receptor leads to upregulation of cyclin D3. Collectively, these results demonstrate that cyclin D3 is an essential cell cycle recipient of G-CSF signaling, and they provide a molecular link of how G-CSF-dependent signaling triggers cell proliferation.  相似文献   
234.
Insulin-independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High-Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate-response element-binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose-sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin-independent glucose metabolism.  相似文献   
235.
Condensation of aminomethylferrocene (1) and substituted benzaldehydes resulted in aldimines 2a-c which followed by reduction with sodium borohydride to give 3a-c. N-methylation of 3a-c with HCHO/NaCNBH3/HOAc led to 4a-c. Treatment of 4a-c with sodium palladium tetrachloride in the presence of sodium acetate afforded cleanly cyclopalladated 5a-c in which configurations consisted of the RNRC, SNSC. The preferable activation of CFerrocenyl-H bond over CPhenyl-H bond was also observed. All compounds 2-5 were characterized by elemental analysis, IR and 1H NMR. In addition, the molecular structure of 5c was confirmed by single crystal X-ray diffraction. The possible mechanism for the formation of 5 was also discussed.  相似文献   
236.
A novel method is described for the preparation of sterile submicron unilamellar liposomes. The method is based on the lyophilization of double emulsions containing disaccharides as lyoprotectants in both the inner and outer aqueous phase. Using various phospholipids or mixtures of lipids as emulsifiers, the double emulsions can be prepared by a two-step emulsification, including hydrophilic agents in the inner aqueous phase or lipophilic agents in the oil phase. Then, the double emulsions are lyophilized after sterilization by passing them through a 0.22-microm pore filter. Rehydration of the lyophilized products results in liposomes with a relatively high encapsulation efficiency (for calcein, 87%; 5-fluorouracil, 19%; flurbiprofen, 93%) and a size below 200 nm measured by the dynamic light scattering technique (DLS) and the atomic force microscopy (AFM). The liposomes were found to be unilamellar from freeze-fracture electron micrographs and X-ray diffraction patterns. In addition, the liposomes can be reconstituted just before use by rehydration of the lyophilized products which are relatively stable. Thus, this reproducible and simple technique can be used to prepare sterilized, submicron unilamellar liposomes with a relatively high encapsulation efficiency, and excellent stability during long-term storage.  相似文献   
237.
Recently, induced pluripotent stem cells (iPS cells) have been derived from various techniques and show great potential for therapy of human diseases. Furthermore, the iPS technique can be used to provide cell models to explore pathological mechanisms of many human diseases in vitro, such as Duchenne muscular dystrophy (DMD), which is a severe recessive X-linked form of muscular dystrophy without effective treatment. In this study, we try to determine whether there are different characteristics of myocytes from mdx iPS cells and C57BL/10 iPS cells. Our results showed that both of mdx and C57BL/10 cells could be induced into iPS cells in vitro, whereas colony-forming ability of mdx iPS cells was much weaker than that of C57BL/10 iPS cells. Meanwhile, mdx iPS cells could be induced to differentiate into myocytes, whereas their differentiation efficiency was much lower than that of C57BL/10 iPS cells. And, the number of apoptotic cells in differentiated myocytes from mdx iPS cells was significantly higher than that from C57BL/10 iPS cells. More importantly, treatment of a pan-caspase inhibitor (Z-VAD) produced a significant decrease in apoptotic cells. This study might add some insight to the biology study of dystrophin gene.  相似文献   
238.
We investigated the signaling basis for tubule pathology during fibrosis after renal injury. Numerous signaling pathways are activated physiologically to direct tubule regeneration after acute kidney injury (AKI) but several persist pathologically after repair. Among these, transforming growth factor (TGF)-β is particularly important because it controls epithelial differentiation and profibrotic cytokine production. We found that increased TGF-β signaling after AKI is accompanied by PTEN loss from proximal tubules (PT). With time, subpopulations of regenerating PT with persistent loss of PTEN (phosphate and tension homolog) failed to differentiate, became growth arrested, expressed vimentin, displayed profibrotic JNK activation, and produced PDGF-B. These tubules were surrounded by fibrosis. In contrast, PTEN recovery was associated with epithelial differentiation, normal tubule repair, and less fibrosis. This beneficial outcome was promoted by TGF-β antagonism. Tubule-specific induction of TGF-β led to PTEN loss, JNK activation, and fibrosis even without prior AKI. In PT culture, high TGF-β depleted PTEN, inhibited differentiation, and activated JNK. Conversely, TGF-β antagonism increased PTEN, promoted differentiation, and decreased JNK activity. Cre-Lox PTEN deletion suppressed differentiation, induced growth arrest, and activated JNK. The low-PTEN state with JNK signaling and fibrosis was ameliorated by contralateral nephrectomy done 2 wk after unilateral ischemia, suggesting reversibility of the low-PTEN dysfunctional tubule phenotype. Vimentin-expressing tubules with low-PTEN and JNK activation were associated with fibrosis also after tubule-selective AKI, and with human chronic kidney diseases of diverse etiology. By preventing tubule differentiation, the low-PTEN state may provide a platform for signals initiated physiologically to persist pathologically and cause fibrosis after injury.  相似文献   
239.
Target-mediated clearance and high antigen load can hamper the efficacy and dosage of many antibodies. We show for the first time that the mouse, cynomolgus, and human cross-reactive, antagonistic anti-proprotein convertase substilisin kexin type 9 (PCSK9) antibodies J10 and the affinity-matured and humanized J16 exhibit target-mediated clearance, resulting in dose-dependent pharmacokinetic profiles. These antibodies prevent the degradation of low density lipoprotein receptor, thus lowering serum levels of LDL-cholesterol and potently reducing serum cholesterol in mice, and selectively reduce LDL-cholesterol in cynomolgus monkeys. In order to increase the pharmacokinetic and efficacy of this promising therapeutic for hypercholesterolemia, we engineered pH-sensitive binding to mouse, cynomolgus, and human PCSK9 into J16, resulting in J17. This antibody shows prolonged half-life and increased duration of cholesterol lowering in two species in vivo by binding to endogenous PCSK9 in mice and cynomolgus monkeys, respectively. The proposed mechanism of this pH-sensitive antibody is that it binds with high affinity to PCSK9 in the plasma at pH 7.4, whereas the antibody-antigen complex dissociates at the endosomal pH of 5.5-6.0 in order to escape from target-mediated degradation. Additionally, this enables the antibody to bind to another PCSK9 and therefore increase the antigen-binding cycles. Furthermore, we show that this effect is dependent on the neonatal Fc receptor, which rescues the dissociated antibody in the endosome from degradation. Engineered pH-sensitive antibodies may enable less frequent or lower dosing of antibodies hampered by target-mediated clearance and high antigen load.  相似文献   
240.
Oxidative stress contributes to tissue injury and cell death during the development of various diseases. The present study aims at investigating whether oxidative stress triggered by the exposure to hydrogen peroxide (H2O2) can induce apoptosis of induced pluripotent stem cells (iPS cells) in a mechanism mediated by insulin-like growth factor (IGF-1) and microRNA-1 (miR-1). iPS cells treated with H2O2 showed increases in miR-1 expression, mitochondria dysfunction, cytochrome-c release and apoptosis, Addition of IGF-1 into the iPS cell cultures reduced the H2O2 cytotoxicity. Prediction algorithms showed that 3′-untranslated regions of IGF-1 gene as a target of miR-1. Moreover, miR-1 mimic, but not miR-1 mimic negative control, diminished the protective effect of IGF-1 on H2O2-induced mitochondrial dysfunction, cytochrome-c release and apoptosis in iPS cells. In conclusion, IGF-1 inhibits H2O2-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. IGF-1′s effect is, at least partially, regulated by miR-1 in iPS cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号