首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5525篇
  免费   405篇
  国内免费   538篇
  6468篇
  2024年   10篇
  2023年   84篇
  2022年   186篇
  2021年   333篇
  2020年   223篇
  2019年   248篇
  2018年   262篇
  2017年   196篇
  2016年   256篇
  2015年   335篇
  2014年   424篇
  2013年   415篇
  2012年   525篇
  2011年   460篇
  2010年   296篇
  2009年   279篇
  2008年   286篇
  2007年   263篇
  2006年   201篇
  2005年   151篇
  2004年   168篇
  2003年   141篇
  2002年   92篇
  2001年   76篇
  2000年   78篇
  1999年   75篇
  1998年   43篇
  1997年   48篇
  1996年   49篇
  1995年   41篇
  1994年   29篇
  1993年   27篇
  1992年   26篇
  1991年   18篇
  1990年   17篇
  1989年   19篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   3篇
  1979年   8篇
  1975年   7篇
  1974年   4篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1966年   3篇
  1965年   3篇
排序方式: 共有6468条查询结果,搜索用时 15 毫秒
131.
Clear cell renal cell carcinoma (ccRCC) is the most popular kidney cancer in adults. Metabolic shift toward aerobic glycolysis is a fundamental factor for ccRCC therapy. MicroRNAs (miRNAs) are thought to be important regulators in ccRCC development and progression. Phosphoinositide-dependent kinase 1 (PDK1) is required for metabolic activation; however, the role of PDK1-induced glycolytic metabolism regulated by miRNAs is unclear in ccRCC. So, the purpose of the current study is to elucidate the underlying mechanism in ccRCC cell metabolism mediated by PDK1. Our results revealed that miR-409-3p inhibited glycolysis by regulating PDK1 expression in ccRCC cells. We also found that miR-409-3p was regulated by hypoxia. Our results indicated that PDK1 facilitated ccRCC cell glycolysis, regulated by miR-409-3p in hypoxia.  相似文献   
132.
Exosomal microRNAs (miRNAs) are suggested to reflect molecular changes occurring in their cells of origin and are potential indicators in the early detection of cancers. This study aimed to determine whether certain exosomal miRNAs from tumor tissue can be used as noninvasive biomarkers for clear cell renal cell carcinoma (ccRCC). Based on ccRCC miRNA expression profiles and the literature, we selected six miRNAs (miR-210, miR-224, miR-452, miR-155, miR-21, and miR-34a) and analyzed their expression in tissues, sera, and serum exosomes through quantitative real-time polymerase chain reaction in hypoxia-induced (with CoCl2) renal cell lines. miR-210, miR-224, miR-452, miR-155, and miR-21 were upregulated in tumor tissues compared with normal tissues. Serum miR-210 and miR-155 levels were higher in patients with ccRCC than in healthy controls (HCs). Furthermore, only exosomal miR-210 was significantly upregulated in patients with ccRCC than in HCs. Moreover, receiver operating characteristic (ROC) curve analysis revealed an area under the ROC curve of 0.8779 (95% confidence interval, 0.7987-0.9571) and a sensitivity and specificity of 82.5% and 80.0%, respectively. Moreover, exosomal miR-210 was upregulated at an advanced stage, and Fuhrman grade and metastasis decreased significantly one month after surgery. Acute hypoxia exposure activates miR-210 and release of exosomes with upregulated miR-210 in both normal and tumor RCC cell lines and interferes with vacuole membrane protein 1 mRNA expression, especially in the metastatic ccRCC cell line. In conclusion, Serum exosomal miR-210 originating from tumor tissue has potential as a novel noninvasive biomarker for the detection and prognosis of ccRCC.  相似文献   
133.
134.
Background/Aims: Fibroblast growth factor 21 (FGF21) plays a protective role in ischemia/reperfusion induced cardiac injury. However, the exact molecular mechanism of FGF21 action remains unclear. This study was designed the protective effect of FGF21 on the heart and its mechanism. Method: Adenovirus vector expressing FGF21 or control β-galactosidase was injected into the myocardium of mice. Myocardial injury was observed by tissue staining and immunohistochemical staining. The expression level of caspases-3 and galectin-3 in myocardial cells were observed by immunoblotting. Then, hypoxia-induced cell model was established. Small interfering RNA (SiRNA) and plasmid were transfected into H9c2 using Lipofectamine 2000 reagent (Invitrogen). The expression levels of galectin-3, ECM and cystatin-3 in cells were observed by immunoblotting, and the relationship between fibroblast growth factor 21 and galectin-3 was analyzed. Result: Cell test in vitro showed that FGF21 could inhibit apoptosis and decrease the expression of ECM (ColIaI, fibronectin, and alpha-SMA) under hypoxia. Western blot data showed that hypoxia-induced cell damage increased galectin-3 levels, while FGF21 decreased galactose lectin-3 levels. In addition, inhibition of galactose agglutinin-3 expression by siRNA enhanced the cardioprotective effect of FGF21, while overexpression of galectin-3 reduced the cardioprotective effect of fibroblast growth factor 21. Conclusion: FGF21 may be a novel therapy for hypoxia-induced cardiac injury by regulating the expression of galectin-3.  相似文献   
135.
Platelet-derived growth factor BB (PDGF) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). In the present study, we have examined the effects of PDGF on the 12-lipoxygenase (12-LO) pathway of arachidonate metabolism in porcine aortic VSMC (PVSMC). The rationale for this is previous studies showing that LO products have growth and chemotactic effects in VSMC and that another VSMC growth factor, angiotensin II, is a potent positive regulator of 12-LO activity and expression. We observed that PDGF causes a significant increase in the formation of the 12-LO product, 12-hydroxyeicosatetraenoic acid (12-HETE) in PVSMC. In addition, PDGF also markedly increased leukocyte-type 12-LO messenger RNA and protein expression. PDGF-induced PVSMC migration was inhibited significantly by two LO blockers but not by a cyclooxygenase blocker. Furthermore, although the proliferative effects of PDGF on PVSMC were not altered by cell culture under hyperglycemic conditions (25 mM glucose, HG), the chemotactic effects of PDGF as well as those of 10% fetal calf serum were significantly greater in cells cultured in HG as compared to normal glucose conditions (5.5 mM), thus indicating a potential new mechanism for the accelerated cardiovascular disease usually observed in diabetes. These results indicate a novel mechanism for the biological effects of PDGF in leading to cardiovascular disease. © 1996 Wiley-Liss, Inc.  相似文献   
136.
The lamellar body (LB), a concentric structure loaded with surfactant proteins and phospholipids, is an organelle specific to type 2 alveolar epithelial cells (AT2). However, the origin of LBs has not been fully elucidated. We have previously reported that autophagy regulates Weibel-Palade bodies (WPBs) formation, and here we demonstrated that autophagy is involved in LB maturation, another lysosome-related organelle. We found that during development, LBs were transformed from autophagic vacuoles containing cytoplasmic contents such as glycogen. Fusion between LBs and autophagosomes was observed in wild-type neonate mice. Moreover, the markers of autophagic activity, microtubule-associated protein 1 light chain 3B (LC3B), largely co-localized on the limiting membrane of the LB. Both autophagy-related gene 7 (Atg7) global knockout and conditional Atg7 knockdown in AT2 cells in mice led to defects in LB maturation and surfactant protein B production. Additionally, changes in autophagic activity altered LB formation and surfactant protein B production. Taken together, these results suggest that autophagy plays a critical role in the regulation of LB formation during development and the maintenance of LB homeostasis during adulthood.  相似文献   
137.
为了解二毛期时串子花型滩羊羊毛弯曲形成机理,本试验采用iTRAQ技术及LC-MS/MS的研究方法,对初生期和二毛期串子花型滩羊的皮肤样品进行蛋白质鉴定和筛选,并运用Proteome Discoverer 1.4软件进行定量分析,结合数据库搜索,鉴定出具有显著表达差异的蛋白,同时应用生物学技术对其进行GO和KEGG Pa...  相似文献   
138.
139.
Dear Editor, Hepatocellular carcinoma (HCC) is the second most deadly cancer worldwide.1 Cirrhosis of different causes predisposes patients to HCC,increasing th...  相似文献   
140.
Inhibitory synapses are also known as symmetric synapses due to their lack of prominent postsynaptic densities (PSDs) under a conventional electron microscope (EM). Recent cryo-EM tomography studies indicated that inhibitory synapses also contain PSDs, albeit with a rather thin sheet-like structure. It is not known how such inhibitory PSD (iPSD) sheet might form. Here, we demonstrate that the key inhibitory synapse scaffold protein gephyrin, when in complex with either glycine or GABAA receptors, spontaneously forms highly condensed molecular assemblies via phase separation both in solution and on supported membrane bilayers. Multivalent and specific interactions between the dimeric E-domain of gephyrin and the glycine/GABAA receptor multimer are essential for the iPSD condensate formation. Gephyrin alone does not form condensates. The linker between the G- and E-domains of gephyrin inhibits the iPSD condensate formation via autoinhibition. Phosphorylation of specific residues in the linker or binding of target proteins such as dynein light chain to the linker domain regulates gephyrin-mediated glycine/GABAA receptor clustering. Thus, analogous to excitatory PSDs, iPSDs are also formed by phase separation-mediated condensation of scaffold protein/neurotransmitter receptor complexes.Subject terms: Cell biology, Molecular biology  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号